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ABSTRACT

This thesis develops a shared control design framework for improving operator

efficiency and performance on hydraulic excavation tasks. The framework is based on

blended shared control (BSC), a technique whereby the operator’s command input

is continually augmented by an assistive controller. Designing a BSC control scheme

is subdivided here into four key components. Task learning utilizes nonparametric

inverse reinforcement learning to identify the underlying goal structure of a task as a

sequence of subgoals directly from the demonstration data of an experienced opera-

tor. These subgoals may be distinct points in the actuator space or distributions over

the space, from which the operator draws a subgoal location during the task. The

remaining three steps are executed on-line during each update of the BSC controller.

In real-time, the subgoal prediction step involves utilizing the subgoal decomposition

from the learning process in order to predict the current subgoal of the operator.

Novel deterministic and probabilistic prediction methods are developed and evalu-

ated for their ease of implementation and performance against manually labeled trial

data. The control generation component involves computing polynomial trajectories

to the predicted subgoal location or mean of the subgoal distribution, and computing

a control input which tracks those trajectories. Finally, the blending law synthesizes

both inputs through a weighted averaging of the human and control input, using

a blending parameter which can be static or dynamic. In the latter case, mapping

probabilistic quantities such as the maximum a posteriori probability or statistical

entropy to the value of the dynamic blending parameter may yield a more intelli-

gent control assistance, scaling the intervention according to the confidence of the

prediction.
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A reduced-scale (1/12) fully hydraulic excavator model was instrumented for

BSC experimentation, equipped with absolute position feedback of each hydraulic

actuator. Experiments were conducted using a standard operator control interface

and a common earthmoving task: loading a truck from a pile. Under BSC, operators

experienced an 18% improvement in mean digging efficiency, defined as mass of

material moved per cycle time. Effects of BSC vary with regard to pure cycle time,

although most operators experienced a reduced mean cycle time.

iii



ACKNOWLEDGMENTS

Before beginning this thesis, I want to first acknowledge and thank the many

people that have made it possible by contributing their support over the years.

To my advisor Dr. Prabhakar Pagilla, thank you for lending your wisdom and

experience to this thesis. Your calm and persistent questioning was a model for

conducting sound scientific research.

To all the members of my research group: Shyam Konduri, Orlando Cobos, Angel

Gomez, Yalun Wen, and Zongyao Jin, your friendship and spirit have made the long

hours spent in the lab a true pleasure. I would like to also thank Harshal Maske of

the DASLAB, University of Illinois at Urbana-Champaign, for offering his advice,

fellowship, and knowledge of the hydraulic excavation domain in the early stages of

this research.

To all the undergraduate mechanical engineering students of Texas A&M whom I

have had the pleasure to work with as a teaching assistant, your energy and curiosity

were a constant source of inspiration.

To my parents, Chris and Tammy, your support and encouragement over so many

years have made the pursuit of this degree possible. You provide a constant example

for living a happy, healthy, and fulfilling life. Thank you.

Finally, to Teal, your generous love, patience, and lightheartedness provide bal-

ance in everything I do. Despite the distance, you offered immediate and unhesitating

support in my desire to attend graduate school, and I am immensely grateful.

iv



CONTRIBUTORS AND FUNDING SOURCES

Contributors

This thesis was supported by a committee consisting of Professor Prabhakar Pag-

illa (advisor) and Professor Bryan Rasmussen of the Department of Mechanical Engi-

neering and Professor Xingyong Song of the Department of Engineering Technology

& Industrial Distribution.

This research was conducted as part of an ongoing collaborative effort, with

complementary research being conducted by Dr. Girish Chowdhary and Harshal

Maske of the Department of Agricultural and Biological Engineering, University of

Illinois Urbana-Champaign, and Dr. Charles Abramson and Emily Kieson of the

Department of Psychology, Oklahoma State University.

Discussions with H. Maske at UIUC helped to direct our investigations of subgoal

prediction methods. All other work conducted for this thesis was completed by the

student independently.

Funding Sources

Graduate study was generously supported by the Sally and Ray Bowen ’58 Fel-

lowship from Texas A&M University. This research was made possible in part by

the National Science Foundation under Award No. 1527828.

v



NOMENCLATURE

SC Shared Control

CSC Continuously Shared Control

BSC Blended Shared Control

HIL Human-in-the-Loop

OOTL Out-of-the-Loop

RL Reinforcement Learning

IRL Inverse Reinforcement learning

BNIRL Bayesian Nonparametric IRL

DPMIRL Dirichlet Process-Means IRL

GMM Gaussian Mixture Model

CP-GMM Changepoint GMM IRL

FSM-P Finite State Machine Prediction

AC-P Action Comparison Prediction

MVN-AC-P Multivariate Normal Action Comparison Prediction

vi



TABLE OF CONTENTS

Page

ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii

ACKNOWLEDGMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv

CONTRIBUTORS AND FUNDING SOURCES . . . . . . . . . . . . . . . . . v

NOMENCLATURE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi

TABLE OF CONTENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix

LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi

1. INTRODUCTION AND LITERATURE REVIEW . . . . . . . . . . . . . 1

1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1.1 Automation as a Continuum . . . . . . . . . . . . . . . . . . . 2
1.1.2 Application Domain . . . . . . . . . . . . . . . . . . . . . . . 2
1.1.3 Research Objective . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2 Thesis Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3 Background and Relevant Literature . . . . . . . . . . . . . . . . . . 3

1.3.1 Excavator Hydraulic Systems . . . . . . . . . . . . . . . . . . 5
1.3.2 Kinematic and Dynamic Modeling . . . . . . . . . . . . . . . . 7
1.3.3 Automatic Control of Hydraulic Manipulators . . . . . . . . . 8
1.3.4 Shared Control . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.3.5 Types and Examples of Shared Control . . . . . . . . . . . . . 10
1.3.6 Learning from Demonstration . . . . . . . . . . . . . . . . . . 14
1.3.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
1.3.8 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2. KINEMATIC AND DYNAMIC MODELING . . . . . . . . . . . . . . . . 18

2.1 Nomenclature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.1.1 Hydraulic Characteristics . . . . . . . . . . . . . . . . . . . . . 18
2.1.2 Kinematics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.1.3 Actuator Mechanics . . . . . . . . . . . . . . . . . . . . . . . . 18
2.1.4 Other Symbols . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

vii



2.2 Kinematics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.3 Hydraulic Actuation . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.3.1 Pressure-Flow Relationship . . . . . . . . . . . . . . . . . . . 25
2.3.2 Flow Continuity . . . . . . . . . . . . . . . . . . . . . . . . . . 26
2.3.3 Actuator Mechanics . . . . . . . . . . . . . . . . . . . . . . . . 28

2.4 Manipulator Dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3. TASK LEARNING AND SUBGOAL PREDICTION . . . . . . . . . . . . 31

3.1 Task Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.1.1 Markov Decision Processes . . . . . . . . . . . . . . . . . . . . 32
3.1.2 Reinforcement Learning and Inverse Reinforcement Learning . 33
3.1.3 Bayesian Nonparametric IRL . . . . . . . . . . . . . . . . . . 33
3.1.4 Dirichlet Process Means IRL . . . . . . . . . . . . . . . . . . . 40
3.1.5 Changepoint Gaussian Mixture Model Clustering . . . . . . . 44
3.1.6 Summary of Task Identification . . . . . . . . . . . . . . . . . 47
3.1.7 Stochastic Transition Matrix . . . . . . . . . . . . . . . . . . . 47

3.2 Prediction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
3.2.1 Deterministic Prediction . . . . . . . . . . . . . . . . . . . . . 49
3.2.2 Probabilistic Action Comparison Prediction . . . . . . . . . . 53
3.2.3 Multivariate Normal Action Comparison Prediction . . . . . . 54
3.2.4 Prediction Comparison and Summary . . . . . . . . . . . . . . 56
3.2.5 Wireframe Simulation . . . . . . . . . . . . . . . . . . . . . . 59

4. TRAJECTORY CONTROL AND BLENDING . . . . . . . . . . . . . . . 60

4.1 Trajectory Generation . . . . . . . . . . . . . . . . . . . . . . . . . . 60
4.2 Low-Level Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
4.3 Blending of Control Inputs . . . . . . . . . . . . . . . . . . . . . . . . 64

5. EXPERIMENTAL DESIGN AND RESULTS . . . . . . . . . . . . . . . . 69

5.1 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
5.1.1 1/12th Scale Hydraulic Excavator . . . . . . . . . . . . . . . . 69
5.1.2 Instrumentation . . . . . . . . . . . . . . . . . . . . . . . . . . 70
5.1.3 Operator Interface . . . . . . . . . . . . . . . . . . . . . . . . 74

5.2 Deterministic BSC Trials . . . . . . . . . . . . . . . . . . . . . . . . . 76

6. SUMMARY AND FUTURE WORK . . . . . . . . . . . . . . . . . . . . . 82

REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

APPENDIX A. KINEMATIC AND ACTUATOR PARAMETERS OF THE
REDUCED-SCALE MODEL . . . . . . . . . . . . . . . . . . . . . . . . . 92

viii



LIST OF FIGURES

FIGURE Page

1.1 Anatomy of an excavator . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.2 The SAE control interface . . . . . . . . . . . . . . . . . . . . . . . . 5

2.1 Denavit-Hartenberg frame selection and parameters, and points A−H 20

2.2 A 4/3 spool valve . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.3 The closed-center (overlapped) valve configuration . . . . . . . . . . . 25

2.4 Front and rear views of the rotary valve manifold on the experimental
model; two valves are hidden on the front view to illustrate the port
arrangement on the manifold . . . . . . . . . . . . . . . . . . . . . . 26

2.5 Orifice area versus valve displacement . . . . . . . . . . . . . . . . . . 27

3.1 Action likelihood over all angles θ and three β parameters . . . . . . 36

3.2 Observations in training data; states are circles, and actions are rep-
resented as vectors from that state . . . . . . . . . . . . . . . . . . . 38

3.3 Resulting subgoals from BNIRL algorithm with varying parameters . 39

3.4 Posterior subgoal counts for a grid of parameter sets . . . . . . . . . . 39

3.5 The motion classes on each actuator for a manual dig cycle . . . . . . 43

3.6 Labeled observations and DPMIRL subgoal means . . . . . . . . . . . 43

3.7 States and acceleration vector norms for a manual truck loading op-
eration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.8 Changepoint clustering results . . . . . . . . . . . . . . . . . . . . . . 46

3.9 The 6 termination sets illustrated in the workspace. Note that the sets
are defined in the actuator space, from which the forward kinematics
have been used to illustrate these regions in the end-effector space. . . 51

ix



3.10 Prediction state diagram for subgoal k. Since the task is cyclic, the
conventions k− 1 and k+ 1 are used here merely for convenience, and
actually refer to the previous and next subgoals, respectively. . . . . . 52

3.11 Two test cases of the Gaussian action likelihood . . . . . . . . . . . . 56

3.12 Comparison of prediction methods . . . . . . . . . . . . . . . . . . . . 57

3.13 A wireframe kinematic simulation for developing prediction algorithms 59

4.1 Tracking performance for simultaneous tracking on all actuators; the
stick actuator receives low flow priority and cannot meet tracking de-
mands, even with the valve saturated . . . . . . . . . . . . . . . . . . 63

5.1 The 1/12th-scale instrumented hydraulic excavator . . . . . . . . . . 70

5.2 Steady-state actuator velocity as a function of PWM duty cycle . . . 71

5.3 String potentiometer assembly . . . . . . . . . . . . . . . . . . . . . . 73

5.4 Calibration curves for the string potentiometers . . . . . . . . . . . . 74

5.5 BeagleBone Cape PCB . . . . . . . . . . . . . . . . . . . . . . . . . . 74

5.6 Overview of experimental setup . . . . . . . . . . . . . . . . . . . . . 75

5.7 Operator view of workspace . . . . . . . . . . . . . . . . . . . . . . . 75

5.8 Logical overview of BSC software . . . . . . . . . . . . . . . . . . . . 77

5.9 Sampled data for the swing actuator in the three operating modes.
Vertical dotted lines denote the end of a cycle, i.e., the end of subgoal 6. 78

5.10 The effect of blending on cycle time varies with the operator style and
experience. (M: Manual, B: Blended, O: Operator, AU: Autonomous) 79

5.11 Comparison of cycle efficiency for different operators and operating
modes. Cycle efficiency is measured as the mass of material moved in
a cycle divided by the cycle time. Higher efficiency is desirable. (M:
Manual, B: Blended, O: Operator) . . . . . . . . . . . . . . . . . . . . 79

5.12 Comparison of cycle time and cycle efficiency across all operators. (M:
Manual, B: Blended) . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

x



LIST OF TABLES

TABLE Page

1.1 Traits of human and computer agents . . . . . . . . . . . . . . . . . . 10

1.2 Types and examples of shared control . . . . . . . . . . . . . . . . . . 12

2.1 Denavit-Hartenberg parameters for the 1/12 scale excavator model . . 22

3.1 Summary of task identification algorithms . . . . . . . . . . . . . . . 48

3.2 Summary of prediction algorithm performance . . . . . . . . . . . . . 58

3.3 Summary of subgoal prediction algorithms . . . . . . . . . . . . . . . 58

5.1 Experimental parameters for learning and prediction. The trials were
run prior to the development of the changepoint filtering process, so
a set of points were selected from the data and clustered using a DP-
GMM. The termination sets were defined by the mean of the subgoal
distribution plus or minus 2 standard deviations on each actuator,
i.e., 2

√
Σii. The initiation sets were identified by observing the com-

mon movements between subgoals and applying a threshold on those
actuators in the subgoal direction. . . . . . . . . . . . . . . . . . . . . 81

A.1 Kinematic parameters of the reduced-scale excavator model; ∗rcyl,1 de-
notes the length of the hydraulic cylinder (excluding the rod extension
length), all other parameters are consistent with Sec. 2.2. . . . . . . . 92

A.2 Measured actuator parameters; note that udb here is the deadband as
a percentage of PWM duty cycle, as in Fig. 5.2, and ζ̇i,max and ζ̈i,max

are the maximum velocity and acceleration, respectively, of the ith
actuator. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

xi



1. INTRODUCTION AND LITERATURE REVIEW

1.1 Motivation

The benefits of automatic control for industrial manipulation are well known

and clearly documented in literature. By exploiting the repetitive nature of manu-

facturing and material handling processes, automation has reduced labor costs and

improved repeatability and efficiency. However, these automation techniques have

not translated swiftly to less structured application domains.

In particular, earthmoving tasks like digging, compacting, and grading are still

executed manually by skilled operators, with few exceptions. Safe and efficient exe-

cution of these tasks with hydraulic earthmoving equipment plays a critical role in

the construction, mining, and forestry industries. Recently, industry experts have

anticipated a growing need for computer assisted control due to an expanding skill

gap among operators and growing job and equipment complexity [1]. Also, market

analysts suggest that the earthmoving equipment industry alone is expected to grow

to $180 billion USD by 2022, with strong emphasis on research and development as

a major driving factor [2].

Fully autonomous earthmoving equipment were investigated as early as the 1990’s

for prospective benefits in task completion time, operational efficiency, performance,

and repeatability, as in Bradley, et al. [3] and Rowe, et al. [4]. However, the lack of

situational awareness and flexibility in autonomous architectures, combined with an

industry that is notably risk averse, have driven research interest toward development

of novel control schemes which are human-centric.

1



1.1.1 Automation as a Continuum

Key to these novel control schemes is the paradigm that automation exists on

a continuum between two extrema, fully manual operation and full autonomy [5].

Where the current capabilities of full autonomy fail to meet certain application de-

mands, inclusion of a human in the control loop, or human-in-the-loop (HIL), enables

a more robust set of system behaviors. These control strategies which leverage a hu-

man agent (HA) and computer agent (CA) in cooperation have been given numerous

designations, but in this work are referred to collectively as shared control (SC) .

1.1.2 Application Domain

Among the range of earthmoving equipment in the market today, excavators are

a popular tool due to their jobsite versatility. Analysts suggest that the excavator

market will exhibit outsized growth due to broad demand in residential applications

and infrastructure development [2]. Modern intelligent excavators already feature

advanced sensor suites, which may enable implementation of shared control algo-

rithms with limited cost or retrofitting. Even a small addition in productivity and

efficiency in state-of-the-art excavator control systems could sum to major economic

advantages. Therefore, the excavator will be of central study in this work, with

the expectation that the core strategies may be extended to similar earthmoving

machinery.

Although the methods of this work are developed primarily for the earthmoving

industry, these techniques are not exclusively applicable to the earthmoving domain.

The proposed control schemes 1) exploit the cyclical nature of earthmoving tasks

to improve task efficiency in a dynamic environment, while 2) relinquishing control

smoothly to the human operator during off-nominal situations.
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1.1.3 Research Objective

The objectives of this research are to develop a shared control policy for excavators

which improves digging task efficiency without sacrificing situational robustness, and

to measure the effectiveness of the proposed control policy.

1.2 Thesis Overview

This thesis is organized as follows: a practical background of hydraulic excavators

and review of relevant literature are presented in the remainder of Chapter 1. The

kinematics and dynamics of an excavator are developed in Chapter 2, along with a

discussion of low-level position control of an excavator. Chapters 3 and 4 discuss the

theoretical frameworks for the individual components of the proposed shared control

architecture, namely, task learning and subgoal prediction, and control generation

and blending. Chapter 5 documents the development of a reduced-scale hydraulic

excavator testbed, some practical considerations in software implementation, and

a series of experiments conducted to validate the proposed control methodologies.

Finally, Chapter 6 gives a brief summary of the key contributions of this work and

identifies areas for further investigation.

1.3 Background and Relevant Literature

The excavator is a member of a family of hydraulic earthmoving equipment includ-

ing excavators, front loaders or wheel loaders, backhoe loaders, and motor graders.

This class of equipment leverages fluid power by means of hydraulic cylinders and

hydraulic motors for various tasks including but not limited to: digging, drilling,

compacting, and grading (leveling or producing a specified slope).

An excavator has the following three main sub-assemblies: a base or undercar-

riage, upper structure (cabin and engine bay), and manipulator. The typical ex-
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cavator exhibits six degrees of freedom (DOF): two independently driven tracks, a

swing motor which adjusts the azimuth orientation of the upper structure, and three

DOF manipulator (or arm). The three revolute joints share parallel axes, and form

an open kinematic chain usually terminating with a toothed bucket. The links and

corresponding hydraulic actuators of the manipulator are referred to as the boom,

stick, and bucket. These components are illustrated in Fig. 1.1.

Boom
Stick

Bucket

Boom 
Cylinder

Stick Cylinder

Bucket 
Cylinder

Swing  

θ

Base  

Upper
Structure  

Figure 1.1: Anatomy of an excavator

Typically, a human operator controls the excavator from the cabin with a pair of

levers and a pair of foot pedals, as illustrated in Fig. 1.2. The levers each have two

axes, each axis controlling either the swing motor or one of the three hydraulic actu-

ators. The foot pedals are used to drive the tracks on the undercarriage forward and

backward. This configuration is standardized by the Society of Automative Engineers

(SAE) and is used almost universally in the USA, irrespective of the manufacturer.
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Boom Down

Boom Up

Stick Out

Stick In

Bucket
Curl

Bucket
Uncurl

Swing
Right 
(CW)

Swing
Left 

(CCW)

Left Track 
Forward

Right Track 
Forward

Right Track 
Reverse

Left Track 
Reverse

Figure 1.2: The SAE control interface

1.3.1 Excavator Hydraulic Systems

Modern electro-hydraulic actuator systems used in earthmoving machinery vary

greatly, with the latest control and hardware adaptations targeting fuel efficiency

and responsiveness. However, some components are reasonably consistent between

new model excavators.

Typically, hydraulic fluid is circulated by one or more variable displacement axial-

piston pumps. The fluid is directed to the actuators and throttled by means of

directional control valves, usually of the spool type, which consist of a linear spool

that obstructs the ports of the valve until actuated. The main hydraulic spool valves
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are typically actuated by solenoids (i.e., servovalves) or hydraulic pilot lines, which

are often driven by a separate gear pump. Usage of a low pressure pilot line stiffens

the joystick spool command against the flow forces on the main spool.

One classification of valve spool arrangements involves the operation of the valve

in the neutral position, i.e., with no spool displacement. Open center valves, also

called underlapped, have a geometry which allows fluid passage with no valve dis-

placement. A single open center actuator circuit will maintain a low pressure flow

with no actuator load and can employ a standard fixed displacement pump. Closed

center, or overlapped, spools will build a high pressure at the neutral spool position,

due to the completely impeded flow. Closed center valves usually enable better fuel

performance, but require the use of more costly variable displacement pumps.

Among variable displacement pump applications, some discussion of the pump

speed regulation is warranted as it impacts the responsiveness of the actuators. Sim-

ple constant pressure schemes set a reference pressure and modulate pump displace-

ment to maintain that pressure. This reference pressure also dictates the maximum

load capability of the actuator.

Alternatively, load sensing (LS) involves feeding back the pressure drop across the

valve orifice to increase pump displacement and maintain constant flow in the pres-

ence of a large load. LS hydraulic circuits raise system pressure to match the largest

load requirement, while maximizing efficiency during light operation. This feedback

is currently achieved hydraulically, although electric systems are in development and

are expected to provide a faster response, better stability, and less hydraulic power

loss.
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1.3.2 Kinematic and Dynamic Modeling

Hydraulic system dynamics and hydraulic control system design have been pre-

sented in detail by many authors [6, 7]. In these works, dynamic models of varying

complexity are established for most hydraulic system topologies, with various pump,

valve, and actuation types. Despite the different hydraulic topologies, some dy-

namic characteristics are common to hydraulic systems. One notable nonlinearity

in hydraulic actuation is valve flow, governed by the classical orifice equation, which

is nonlinear in terms of the pressure differential. Other nonlinearities include flow

coupling and valve deadband, the latter of which is only present in closed-center

valve spool arrangements [8]. The nonlinear coupling effects of shared flow sources

in excavators were explored by Sepehri [9].

Prior to the 1990’s, more comprehensive models of hydraulic excavators received

little scientific attention. However, the pursuit of automatic control systems to ex-

ecute digging tasks prompted several authors to develop more extensive dynamic

models. In most of these developments, the models were then subsequently used in

model-based design and simulation of automatic control systems. Vaha and Skib-

niewski developed a dynamic model for the 3-DOF excavator manipulator, utilizing

Newton-Euler equations for each local joint frame [10]. Soon after, Koivo, et al.

presented a systematic development of the kinematics and dynamics of the 4-DOF

manipulator, with the inclusion of the swing axis, using similar Newton-Euler model-

ing techniques [11]. In Koivo’s frequently cited paper, a soil-bucket interaction model

is also presented, which attempts to quantify the reaction force on the bucket, and is

based on work by Alekseeva et al. [12]. Although useful, these soil models are highly

empirical and require a priori knowledge of soil parameters.

7



1.3.3 Automatic Control of Hydraulic Manipulators

Linear and nonlinear control techniques for hydraulic systems have a rich and

lengthy history, which is described with appropriate detail in [6] and [7]. These con-

trol design methods are hereafter referred to as low-level for the sake of clarity. These

so-called low-level techniques seek to solve classical control problems of stability, ref-

erence tracking, and disturbance robustness. Typically, in autonomous systems, a

high-level controller is designed to address the problem of generating the behaviors

or trajectories needed to execute a task and passing them to the low-level controller.

One of the earliest fully integrated autonomous excavation systems was the Lan-

caster University Computerised Intelligent Excavator (LUCIE). LUCIE was designed

to efficiently dig trenches with a heavily hierarchical and rule-based high-level con-

troller, which sends velocity commands to a low-level controller [3]. Position con-

trol was initially avoided due to tracking difficulty during soil contact and reverse

kinematic complexities. LUCIE was later adapted by Gu and Seward to utilize a

proportional-integral-plus gain scheduling (PIP) methodology for position trajectory

following in free air only.

Sirouspour and Salcudean developed an adaptive nonlinear controller for hy-

draulic manipulators with the backstepping design method, and demonstrated its

effectiveness on a hydraulic Stewart platform [13, 14].

Hydraulic earthmoving machines exhibit both kinematic coupling via the manip-

ulator arm and hydraulic coupling due to shared flow and pressure sources among

actuators. Although current control design methods are mostly based on single-input

single-output (SISO) techniques, some researchers have proposed robust controllers

which take into account the multi-input multi-output (MIMO) nature of earthmoving

systems. In control of a wheel loader, which is kinematically similar to an excava-
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tor, Fales and Kelkar presented an H∞ controller with feedback linearization for

automatic bucket leveling, based on a high fidelity dynamic model [15, 16].

One control issue that is characteristic of earthmoving automation is the force

discontinuity that occurs when the bucket contacts the soil and transitions from

free motion to motion that is force-constrained. With soil-tool interaction forces

being non-negligible and difficult to model, several researchers have turned to active

compliance control, which is comprised of two main categories: hybrid position/force

control and impedance control. In hybrid position/force control, as in [17], the task

space is divided into non-conflicting position and force controlled subspaces, with

the undesirable consequence of having to switch control laws at the soil surface.

In contrast, impedance control, as presented in Hogan’s influential series of papers

[18], focuses on shaping the dynamics between the environmental contact forces and

endpoint position of the manipulator. Impedance control is generally favored for

excavation systems over hybrid position/force approaches, as it provides a unified

control law. Impedance control has been applied both in fully autonomous systems

[19], and as a means of giving transparency to teleoperated systems, by matching

impedances at the machine and at the remote control interface [20, 21].

1.3.4 Shared Control

The study of man-machine interaction saw much attention in the mid-to-late 20th

century, particularly with regard to aviation and space exploration systems, driven by

the need for high performance in hazardous, remote, and/or complex environments.

Study of these man-machine systems has attracted a unique array of disciplines,

synthesizing engineering and machine design with human physiology and psychology.

The books by Sheridan, et al., illustrate this multi-faceted approach and provide

elaborate taxonomies on human behavior with respect to man-machine systems [22,

9



23].

Over time, distinct Shared Control (SC) architectures emerged in the man-

machine system category, including tele-robotics and human supervisory control.

These subtopics exhibit many of the same challenges, but suffer from a very broad

and disconnected research base, as well as a lack of formal design or analysis tech-

niques, as acknowledged by the IEEE Technical Comittee on Shared Control [24, 25].

As a result, design and evaluation is still largely in the hands of the individual de-

signer, and the metrics used are typically very specific to the application domain.

Despite a deficiency of formal design methods, proper selection of a shared control

architecture stems from an explicit understanding of the traits of both the HA and

CA, as listed in Table 1.1. Although these assumed traits are broad and may have

exceptions, they are generally self-evident, and provide a framework for discussion.

Most SC scenarios seek to synthesize the advantages of both agents in an architecture

that is germane to the task at hand.

Human Computer
robust fast
adaptive reliable

safety conscious precise
able to reason inexhaustible

Table 1.1: Traits of human and computer agents

1.3.5 Types and Examples of Shared Control

Perhaps the simplest SC architecture is known as traded control. Here, control of

the system is literally traded between the human and computer, as in aircraft autopi-

lot systems. In critical scenarios such as manned flight, traded automation strategies
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suffer from the human out-of-the-loop (OOTL) problem. Since humans are typically

only required to resume manual control under abnormal circumstances where the

automation has failed, numerous studies have shown that operators resuming active

control are much less aware of system state and less capable of fault-management

[26, 27, 28, 29, 30]. Mitigating the OOTL performance problem is a central objective

of human-centric automation, and provides strong motivation for a more smooth

transition of control authority, when such a transition is necessary.

Another common form of SC is collaborative control, wherein certain functions

of the machine are human operated while the remaining functions are automatically

controlled. For instance, automotive cruise control regulates the speed of the vehicle,

while the driver maintains control of the steering angle.

Many other forms of SC have been assessed in excavation systems, both theoret-

ically and experimentally. Coordinated control, which consists of mapping operator

inputs in a general three-dimensional workspace to the end-effector position in the

manipulator workspace, has been explored by many authors [9, 31, 32, 33]. Coor-

dinated control offers a more natural command interface for the operator, at the

expense of non-standard and typically more costly control interfaces and mapping

complexities.

Virtual constraint SC policies have been most successful in industry adoption for

hydraulic excavation systems, as evidenced by Komatsu’s recently launched Intelli-

gent Machine Control (IMC) system, which can help to fix digging grades (angles),

square the bucket position with the digging surface, and even stop the bucket from

overdigging. The IMC outfitted Komatsu PC210LCi-10 (Komatsu America Corp.)

utilizes stroke-sensing cylinders, an IMU, and GNSS data to sense the machine pose

and environment [34]. These SC methods are summarized in Table 1.2.

Recently, in robotics and automation, promising developments have been made
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Type Application Description
Traded control Aircraft autopilot Pilot may turn autopilot on/off
Collaborative control Automotive cruise

control
Human steers, computer main-
tains vehicle speed

Coordinated control DaVinci robot Maps operator joystick input to
scaled manipulator workspace

Virtual constraint DaVinci robot Surgeon cannot leave bounded
operating environment

Table 1.2: Types and examples of shared control

in continuously shared control (CSC), where the operator input is continuously com-

bined with automated assistance. One attractive example of CSC is a potential field

approach (PFA) which incorporates the operator input as an additional vector in a

virtual potential field, which together guide the motion of the robot. This PFA-based

approach has been implemented in several domains, but defining such a field could

be very complex in certain scenarios [35, 36].

In the earthmoving domain, Enes presented a Blended Shared Control (BSC)

strategy, which combined the operator command with a time-optimal control per-

turbation by means of a variable blending parameter [37]. The BSC architecture is

particularly well suited to the highly dynamic earth-moving environment. In Enes’

presentation and other robotics implementations similar to BSC such as [38, 39], the

control scheme can be broadly divided into three distinct steps: task identification,

task optimization, and control blending.

Traditionally, the task identification step utilizes so-called motion primitives,

mapping the input space to motion classes with corresponding actuator endpoints.

The predicted motion classes and endpoints are then used in a real-time optimization

to derive an optimal control input, denoted u∗. The final blending step is achieved
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by means of the following blended control law:

u = ū+ α(u∗ − ū) (1.1)

where ū is the human operator command and α is a variable blending parameter

such that

α ∈ [0, 1] (1.2)

The effect of the blending parameter, α, is a continuous control over the level of

authority granted to the human agent and the optimal controller. Enes acknowledged

that varying this blending parameter could offer better situational performance in

specific tasks or environments. However, determination of this blending parameter

is the subject of ongoing investigations.

More recently, Dragan and Srinivasa presented a holistic policy-blending formal-

ism for shared control, characterizing the fundamental trade-offs present in BSC [40].

The authors coined the terms prediction and arbitration for the task identification

and blending steps, respectively. Further, the authors suggested that the blending

parameter increase with the prediction confidence. They proposed many mathemati-

cal definitions of confidence, including that confidence be a measure of the probability

of the operator’s goal being a certain state, or the entropy of the goal probability

distribution. In the latter case, a higher entropy would result in a lower confidence,

and minimal or no assistive control action. In either case, this confidence value can

be directly mapped to the alpha parameter, and the properties of this mapping de-

fine the arbitration as either aggressive or timid. A more aggressive mapping risks

incorrect control assistance, whereas a more timid mapping may provide too little

assistance.
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1.3.6 Learning from Demonstration

Designing high-level logic and trajectories for autonomous execution of multi-

modal tasks would typically be accomplished by a robotics engineer, perhaps in

coordination with domain experts. However, this design model is poorly scalable

and suffers from the lack of a standardized description of the task.

Crucial to providing automated task assistance is the capability to store a sym-

bolic representation of the task. Historically, this is the job of the robot programmer.

However, modern robots like Baxter indicate the desire for a shift from experts pro-

gramming behaviors to non-experts demonstrating behaviors. The capability to learn

from demonstration makes an autonomous system more agile and versatile.

The problem of Learning from Demonstration (LfD) is typically posed in one of

two ways: given some demonstration set, 1) learn the underlying policy, which is

the relationship between the observed states and demonstrated actions, or 2) learn

the underlying latent reward function, which can then be used to derive policies for

executing the task.

Solving the first problem is more direct, but seeks only to reproduce operator

behaviors and therefore suffers with imperfect or suboptimal demonstration data.

Methods in the second category seek a high-level task description, with one notable

class of algorithms denoted inverse reinforcement learning (IRL). IRL was first posed

by Ng and Russell, and has since been adapted to suit many real-world learning

problems [41, 42].

Implementing solutions to the IRL problem has many practical difficulties, which

include the following:

• Original IRL methods seek to fit a single reward function to the entire state

space. The designer must select some class of candidate reward functions.
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• Closed-form solutions suffer the curse of dimensionality, and can become in-

tractable with large state spaces.

• Other existing techniques for discovering reward functions in continuous state

spaces begin with discretization and do not scale well.

1.3.7 Summary

Modern hydraulic excavator systems have complex nonlinear dynamics. Although

the primary goal of this work is to develop high-level control algorithms, these algo-

rithms must be implemented with a sufficient understanding of the underlying low-

level control issues. These include nonlinearity, flow and kinematic coupling, valve

deadbands, and force discontinuity at the soil interface. These dynamic character-

istics have been addressed in the past with an array of different control methods,

including gain-scheduling, feedback linearization, robust control, and force control

techniques.

With regard to high-level control and autonomy, some trajectory generation

methods have seen success in experimentation, but full autonomy remains too com-

plex and fragile. For these reasons, the excavation industry has been reluctant to

adopt autonomous excavation.

This provides some evidence that, at least for the foreseeable future, removal of

the human operator may not be feasible. Instead, shared control research suggests

that performance benefits are attainable by utilizing automatic control in conjunc-

tion with a human agent in the control loop. In particular, continuously shared con-

trol could optimize excavation task performance while avoiding the out-of-the-loop

performance problem. However, there is still a need to derive meaningful representa-

tions of earth-moving tasks and to develop rules for smoothly transferring authority

between the human and the computer.
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1.3.8 Contributions

This thesis presents a design framework for shared control architectures for hy-

draulic excavation tasks. To begin with, a compact representation of the task must

be formed and stored in a data structure. To that end, this work expands on the

notion of a task being decomposed into task subgoals. Rather than subgoals being

distinct points in the workspace of the excavator, this work proposes each subgoal

as being drawn from a mixture of subgoal distributions, such that the uncertainty of

points of interest can be modeled explicitly.

This research emphasizes learning from demonstration techniques which require

little specification of subgoal structure, and are therefore more scalable to different

manipulation environments and task complexities. Two existing inverse reinforce-

ment learning frameworks are adapted and implemented on real world excavator

operation data. A new learning technique is introduced which identifies change-

points, or locations where the operator redirects motion, as a basis for modeling

subgoal distributions.

To utilize these task representations, the intention of the human operator must

be identified within this subgoal decomposition. This work presents three novel real-

time subgoal prediction schemes. The first uses strict deterministic logic to toggle

control assistance, and requires the control system designer to encode some aspects of

how the task should be performed. The second and third methods are probabilistic,

using Bayes theorem to compute the posterior probability of the current subgoal.

A reduced-scale (1/12th) hydraulic excavator model has been instrumented and

evaluated as an experimental platform for shared control research. The challenges of

conducting excavation experiments with the reduced-scale model as well in scaling

up the results are discussed. Experiments have been conducted with operators of
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varying skill, showing an increase in digging efficiency (mass of material moved per

cycle time) and pure cycle time.

The thesis also delineates how probabilistic prediction methods could be incorpo-

rated into a dynamic blending framework, where the amount of control intervention

is directly determined by the confidence of the predicted subgoal.
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2. KINEMATIC AND DYNAMIC MODELING

This section presents a more detailed discussion of the system architecture of a

hydraulic excavator, along with the development of kinematic and dynamic models

for the 1/12th-scale hydraulic experimental platform. Critical differences between

full-scale excavator hydraulic systems and the reduced-scale excavator which was

used for this thesis will be indicated and discussed in context.

2.1 Nomenclature

2.1.1 Hydraulic Characteristics

β bulk modulus of hydraulic fluid

∆Pij pressure differential across orifice, Pi − Pj

ρ fluid density

Ap,A actuator cap-end (A) pressurized area

Cd orifice discharge coefficient

PR return (tank) pressure

PS supply (pump) pressure

PA actuator cap-end (A) pressure

PB actuator rod-end (B) pressure

Qij flow across orifice, from fluid volume i to j

s spool position
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VA0 actuator cap-end (A) dead volume

2.1.2 Kinematics

oi−1i coordinates of origin of frame {oi} with respect to frame {oi−1}

pim,n vector from point m to point n in frame {oi}

ζi total hydraulic cylinder length

{oi} the ith coordinate frame

Rj
i rotation matrix from frame {oj} to frame {oi}

2.1.3 Actuator Mechanics

b viscous friction component in actuator

Fd unknown disturbance forces

x hydraulic rod displacement

2.1.4 Other Symbols

_A cap-end variable

_B rod-end variable

_R return (tank) variable

_S supply pump variable
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2.2 Kinematics

The base of the excavator is considered fixed in this model, which is an appro-

priate assumption for many earth-moving tasks. The forward kinematics relating

the remaining four joint angles to the end-effector position were developed using the

Denavit-Hartenberg (DH) convention [43], with the selected joint frames shown in

Fig. 2.1, resulting in the DH parameters shown in Table 2.1. The notation {o0}

represents the global frame, which is aligned with the swing motor, positioned at

ground height for convenience. Frames {o1}, {o2}, and {o3} are attached to the

boom, stick, and bucket joints, respectively, and frame {o4} denotes the end-effector

frame at the tip of the bucket.

a2 y2
x2

z2

y3

x3

z3
y4

z4

x4

y0

x0

z0

z1

y1

x1

d1

a1
a3

a4

θ3

θ4

θ2

θ1

B

C

A

D

E

H
F

G

Figure 2.1: Denavit-Hartenberg frame selection and parameters, and points A−H

The vector oi−1i denotes the coordinates of the origin of the frame {oi} with
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respect to the frame {oi−1}. A generic position vector is defined using the convention

pim,n, indicating the vector from point m to point n expressed in frame {oi}. The

angle θi represents the ith joint angle, or more precisely, the angle between xi−1 and

xi. The normal distance between joint axes zi and zi−1 is ai. The homogeneous

transformation from frame i− 1 to i can be represented by

T ii−1 =

 Ri
i−1 oi−1i

0(1×3) 1

 (2.1)

Where Ri
i−1 ∈ SO(3) is the rotation matrix from frame {oi−1} to the frame {oi}.

The homogeneous transformation relating a coordinate vector to a point in the

end-effector frame to the coordinate vector of the same point in the base frame is

found by composing successive transformations T 4
3 , T 3

2 , T 2
1 , and T 1

0 . The resulting

transformation T 0
4 is a function of the joint variables, q = [θ1, θ2, θ3, θ4]

T , and is given

by,

T 0
4 = T 0

1 T
1
2 T

2
3 T

3
4 =



c1c234 −c1s234 s1 c1(a4c234 + a3c23 + a2c2 + a1)

s1c234 −s1s234 −c1 s1(a4c234 + a3c23 + a2c2 + a1)

s234 c234 0 (a4s234 + a3s23 + a2s2 + a1) + d1

0 0 0 0


(2.2)

where ci and si are cos(θi) and sin(θi), respectively, and cijk and sijk are cos(θi +

θj + θk) and sin(θi + θj + θk). Here the DH parameter α1 = π
2
has been applied,

but the remaining parameters are left in symbolic form. The DH parameters for an

experimental 1/12th scale platform are given in Table 2.1.

The following equations relate the hydraulic cylinder lengths and the manipulator

joint angles. The Euclidean distance between any two points m and n is represented

as rm,n and the angle θk,m,n represents the angle between lines km and mn. The
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Link i ai αi di θi
1 3.7 cm π

2
17.1 cm θ1

2 48.2 cm 0 0 θ2
3 25.3 cm 0 0 θ3
4 11.5 cm 0 0 θ4

Table 2.1: Denavit-Hartenberg parameters for the 1/12 scale excavator model

length of the ith hydraulic cylinder is represented by ζi.

θ2 = cos−1
(
r21,B + r21,A − ζ21

2r1,Br1,A

)
− θB,1,2 − θA,1,x1

θ3 = 3π − cos−1
(
r22,C + r22,D − ζ22

2r2,Cr2,D

)
− θ1,2,C − θD,2,3 (2.3)

θ4 = 3π − θF,3,H − θH,3,G − θG,3,4 − θ2,3,D
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where

θF,3,H = cos−1
(
r23,H + r23,F − r2F,H

2r3,F r3,H

)

θH,3,G = cos−1
(
r23,H + r23,G − r2G,H

2r3,Hr3,G

)

r3,H =
√
r23,F + r2F,H − 2r3,F rF,H cos(θH,F,3) (2.4)

θH,F,3 = π − θD,F,E − θE,F,H

θE,F,H = cos−1
(
r2E,F + r2F,H − ζ23

2rE,F rF,H

)

The transformations from joint angles q to the cylinder lengths ζi can be found by

inverting the above relations.

The linear and angular velocities of the ith link are computed using the following

Jacobian,

Ji =

Jvi
Jωi

 =

R0
i−1k̂ × (p00,4 − p00,i−1)

R0
i−1k̂

 (2.5)

where Jv1 ,Jωi are 3× 1 vectors describing the linear and angular velocity.

2.3 Hydraulic Actuation

Although multiple stages of valves may be used in large hydraulic systems, this

model considers direct control of the main valves for generality. Two main types

of proportional hydraulic valves are considered in this thesis: the spool-type valve

which is ubiquitous in full-scale hydraulic excavators and a rotary-type valve which
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is employed by the scale experimental model.

A spool valve is fundamentally classified by the number of ways, or fluid paths

leading in and out of the valve. Four ways are required to actuate a double-acting

cylinder, and these are denoted cap-end (A), rod-end (B), supply (S), and return

(R), illustrated in Fig. 2.2.

Supply, PSReturn, PR

s

Port A, PAPort B, PB

QS

QR

QA
QB

QARQSAQSBQBR

Housing
Spool

Figure 2.2: A 4/3 spool valve

In this depiction a positive displacement s will cause flow from the supply line

(pump) to the cap-end (A) of the actuator, and flow from the rod-end (B) of the

actuator to the return line (tank). However, due to the closed-center configuration,

the displacement must exceed the valve deadband so for fluid to flow, shown in Fig.

2.3.

Rather than a spool valve, the scale experimental platform employs a rotary

valve arrangement. The rotary valve exchanges the linear actuation of a spool with a

rotating servomotor. The principle of operation of the rotary valve block is illustrated

in Fig. 2.4. When the servomotors rotate the valve past the deadband, half-moon

shaped ways simultaneously connect the pump to the actuated end of the cylinder

24



Housing

Spool

so

s

Port

Figure 2.3: The closed-center (overlapped) valve configuration

and the tank to the opposing end of the cylinder. Similar to the discussed spool

valve configuration, the rotary valve is also closed-center and experiences deadband

around the neutral position.

2.3.1 Pressure-Flow Relationship

Flow through an orifice can be modeled by the classical orifice flow relation, given

by

Q = ACd

√
2

ρ
|∆Pij| sgn(∆Pij) (2.6)

where viscous effects are captured by the empirical discharge coefficient, Cd, and

fluid momentum and pressure are modeled explicitly. The term ∆Pij is the pressure

differential across the orifice, or Pi − Pj. The valve discharge area (a function of

spool displacement) is given by A, and fluid density by ρ. The signum function

and absolute value are present to correct for positive flow direction. This equation

is nonlinear due to the square-root pressure term and a nonlinear discharge area

function.

The orifice area is a nonlinear function of the valve displacement and depends

25



from 
pump

to tank

to relief 
valve

blocked

to cap-end 
of cylinder

to rod-end 
of cylinder

half-moon ways connect the 
ports when valve rotates    

u

front

rear

S

A B

R

Figure 2.4: Front and rear views of the rotary valve manifold on the experimental
model; two valves are hidden on the front view to illustrate the port arrangement on
the manifold

heavily on valve port geometry. The area is frequently approximated by a constant

gain on the valve position, which is often adequate. For spool valves the orifice area is

a partially obstructed circle, and for a rotary valve, the area is formed by intersecting

circular areas. The difference in valve gains are shown in Fig. 2.5.

2.3.2 Flow Continuity

The mass of the fluid in the cap-end (A) of the cylinder is described by

mA = ρVA (2.7)
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Figure 2.5: Orifice area versus valve displacement

Taking the derivative with respect to time, we arrive at

ṁA = ρV̇A + ρ̇VA (2.8)

Fluid bulk modulus, β, describes the compressibility of fluid under constant temper-

ature by the following relation:

β = ρ

(
∂P

∂ρ

)
T

(2.9)

≈ ρ
Ṗ

ρ̇
(2.10)

The mass balance of flow across valve orifices gives the following equality:

ṁA = ρQA (2.11)

QA = QSA −QAR (2.12)
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where leakage across the hydraulic piston (i.e., QAB) is assumed to be negligible.

The rod displacement, x, and velocity, ẋ, are related to the cylinder volume by

VA = Ap,Ax+ VA0 (2.13)

V̇A = Ap,Aẋ (2.14)

Where AP,A is the cap-end (A) pressurized area on the piston, and AP,A is the rod-

end (B) pressurized area. The parameter VA0 is the dead (or inactive) volume in

the cap-end of the cylinder. Synthesizing Eqs. (2.8)-(2.14), we have the following

relation:

ṖA =
β

Ap,Ax+ VA0
(QSA −QAR − Ap,Aẋ) (2.15)

This relation can be extended to the rod-end (B), yielding

ṖB =
β

VB0 + Ap,B(xmax − x)
(QSB −QBR + Ap,Bẋ) (2.16)

where xmax is the full stroke of the piston.

2.3.3 Actuator Mechanics

By balancing the fluid pressure forces and load forces, the net force on the rod is

given as:

mrodẍ = PAAp,A − PBAp,B − f(x, ẋ)− bẋ (2.17)

where f is the external load, and bẋ is viscous friction in the actuator.
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2.4 Manipulator Dynamics

Since we are modeling the excavator as a four revolute joint mechanism, the

dynamics can be expressed in the standard robotics form as

D(q)q̈ + C(q, q̇)q̇ +G(q) +B(q̇) = T − Fe (2.18)

where q = [θ1, θ2, θ3, θ4]
T , D is the mass and inertia matrix, C is the Coriolis matrix,

G and B are gravity and friction vector, respectively, and T and Fe are the input joint

torque and external force vectors, respectively. The external forces are a combination

of the forces due to the mass of the soil in the bucket while traveling, digging forces

during digging operation and any other external effects. The mass and inertia matrix

is computed as

D =
∑
i

{miJvi(q)TJvi(q) + Jωi(q)TRi(q)IiRi(q)TJωi(q)T} (2.19)

where Ii is the inertia tensor of the i-th link. If the elements of the inertia matrix

are denoted by d then, the terms of Coriolis matrix are computed using

cjk =
n∑
i=1

1

2

(
∂dkj
∂qi

+
∂dki
∂qj
− ∂dij
∂qk

)
q̇i. (2.20)

The gravity vector for the current configuration can be computed using

G =



0

[g(m2lc2 +m3l3 +m4l4)c2 + g(m3lc3 +m4l4)c23 + gm4lc4c234]

g(m3lc3 +m4l4)c23 + gm4lc4c234

gm4lc4c234


(2.21)
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where the distance between the link joint to its center of mass is denoted lci and the

height of the link center of gravity above the ground is denoted by li.

For simplicity, friction in the link joints is assumed to be negligible. In excavators,

the joint torques are a result of hydraulic cylinder forces, which are described by the

dynamics of the hydraulic actuator. The cylinder forces fi, each described by Eq.

(2.17), are converted to joint torques τi using the geometry of the excavator as follows,

T =



τ1

τ2

τ3

τ4


=



τ1

(p21B × f 2
1B)ζ1

(p32D × f 3
2D)ζ2

(p43G × f 4
3G)ζ3


(2.22)

where τ1 is the swing motor torque and f1B, f2D and f3G represent the hydraulic

cylinder forces acting on cylinder and link contact points B, D and G in the link

coordinate frames, i.e., {o1}, {o2} and {o3}.

The forward and inverse kinematics are used frequently throughout this work

for visualizing and identifying locations in the 3-dimensional (Cartesian) workspace

in analysis. The low-level actuator control is conducted using reference trajectories

defined in the actuator space, eliminating the need for costly inverse kinematics at

run-time. Some dynamic characteristics such as deadband and flow coupling are

identified on the scale model and addressed in Chapter 4.
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3. TASK LEARNING AND SUBGOAL PREDICTION

This chapter addresses the identification and prediction of operator subgoals and

is divided into two components: Sec. 3.1 Task Learning, corresponds to offline in-

ference of latent subgoal locations in complete demonstration datasets, and Sec. 3.2

Prediction, which utilizes the learned subgoal structure from the task learning process

to predict the operator’s current subgoal on-line.

These problems are addressed separately for two main reasons: 1) most learn-

ing from demonstration (LfD) routines rely on computationally expensive iterative

Bayesian algorithms, and 2) we desire the learning of a task to be non-parametric,

i.e., the number of task segments or waypoints is not specified directly in the learn-

ing process, but rather is inherent in the dataset. However, both sections share a

common need: a model for the likelihood of operator action conditioned on a specific

subgoal, which is called the action likelihood.

Note that all of the methods of this chapter will be evaluated against a simple

benchmark task: loading a truck from a pile of dirt. Briefly, this task consists

of scooping material from a pile and dumping the material into the truck bed by

uncurling the bucket. All operator data visualizations will use the same 3-dimensional

viewpoint, where the pile is on the left, the excavator swing axis is at the origin of

the frame, and the truck is on the right, as in Fig. 3.2.

3.1 Task Learning

As outlined in Chapter 1, inverse reinforcement learning (IRL) is the process

of seeking a latent reward function which explains operator behavior, and was first

posed by Ng and Russell [41]. The current reinforcement learning and inverse re-

inforcement learning solution frameworks both assume that the underlying process
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dynamics are governed by a Markov Decision Process (MDP). Some introduction

of MDP preliminaries is presented next, followed by some recent IRL algorithms

applicable to real-world control tasks.

3.1.1 Markov Decision Processes

A (finite) MDP is a tuple (S,A, T, γ, R), where

• S is a set of N states

• A = {a1, ..., ak} is a set of k actions

• T : S × A× S is the transition probability, where T (s1, a1, s2) is the prob-

ability of being in state s2 after taking action a1 in state s1

• γ ∈ [0, 1) is a discount factor

• R : S → R is the reward or reinforcement function

A policy, π is defined formally as a mapping

π : S → A

and the cumulative value function for a policy π, evaluated at state s1 is given by

V π(s1) = E[R(s1) + γR(s2) + γ2R(s3) + ...|π]

In addition the Q-function or action-value function is defined as

Qπ(s, a) = R(s) + γEs′ T [V π(s′)] (3.1)
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3.1.2 Reinforcement Learning and Inverse Reinforcement Learning

Reinforcement learning is the process of seeking an optimal policy, π∗ such that

the cumulative value function V π∗(s) is maximized for all s ∈ S. This corresponds

to seeking the policy for which the action-value function is maximized, given by

π∗(s) = argmax
a
Qπ(s, a, R) (3.2)

The optimal policy is most often computed in discrete state spaces using the value

iteration algorithm, which is based on dynamic programming, or the Q-learning

algorithm in cases where the model for rewards or state transitions is not known

[44]. In contrast, IRL seeks to discover a latent reward function R(s) given MDP/R,

which is an MDP with all parameters specified except the reward function R, and

some set of observations

O = {(s1, a1), (s2, a2), ..., (sN , aN)}

where (si, ai) is the ith observed state-action pair from a length N demonstration.

3.1.3 Bayesian Nonparametric IRL

In 2015, Michini presented a Bayesian nonparametric approach to IRL (BNIRL)

which partitioned the candidate reward function into several reward functions [45,

42]. The author suggested each partition could utilize a simple reward function,

Rg(s), which consists of a constant reward, c, at a single coordinate g, which could
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be considered a subgoal of the operator

Rg(s) =


c s = g

0 s 6= g

(3.3)

The candidate subgoal set G is simply all of the states in the demonstration set;

i.e., it is assumed that the demonstrator reaches all of his/her subgoals at some

point in the demonstration, although not necessarily in an optimal fashion. The

BNIRL algorithm utilizes a Bayesian nonparametric generative model for the subgoal

partition assignment of the form

P (zi|z−i,O)︸ ︷︷ ︸
assignment posterior

∝ P (zi|z−i)︸ ︷︷ ︸
CRP

P (Oi|Ri)︸ ︷︷ ︸
action likelihood

(3.4)

where zi is the partition label (subgoal label) for state si, and the assignment prior

is a Chinese restaurant process (CRP), according to

P (zi|z−i) =


∑

(z−i=j)
N−1+η If partition j already exists

η
N−1+η If partition j is new

(3.5)

with hyperparameter η controlling the tendency to form new partitions. The CRP

construction is used to generate samples from a Dirichlet process, for which a more

thorough introduction is provided in [46].

The action likelihood is formed by an exponential rationality model

P (Oi|Rzi) = P (ai|si, zi) ∝ eβQ
∗(si,ai,Rzi ) (3.6)

where the optimal value function must be solved to compute Q∗, and β is a scaling
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parameter∗. One major contribution of the BNIRL approach was to approximate Q∗

with a closed-loop action comparison, such that

P (Oi|Rzi) = P (ai|si, zi) ∝ e−β‖ai−aCL‖2 (3.7)

where aCL is the action of a proportional feedback controller whose setpoint is the

location of the zthi subgoal gzi. In words, given some state si and subgoal partition zi,

the most likely actions are those that approach the action of a closed-loop controller

aCL. In BNIRL, Gibbs sampling over (3.4) is used to form the joint posterior, which

involves iteratively sampling the conditional distribution over partition assignments

to form a posterior joint distribution. In a video demonstration, Michini moves

a quadcopter manually through a series of waypoints in a plane, after which the

algorithm effectively converges on the subgoals of the demonstration.

In seeking a compact representation of earthmoving tasks from demonstration

data, the BNIRL algorithm was implemented and executed on manual operation

data. However, the magnitude of the closed-loop action was difficult to calibrate to

various operator styles and actuator saturation ranges. Therefore, rather than using

the closed-loop action comparison, a less strict action comparison is formulated as

the following

P (ai|si, zi) ∝ eβ[cos(θ)−1] (3.8)

where θ is the angle subtended by the action vector, ai and the vector from the

current state to the subgoal, psi,gzi, the cosine of which is equivalent to

cos(θ) =
psi,zi · ai
‖psi,zi‖ ‖ai‖

(3.9)

∗the original publication used α, but this conflicts with our blending parameter
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The resulting action likelihood over all angles, θ, and multiple scaling parameters,

β, is shown in Fig. 3.1.
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Figure 3.1: Action likelihood over all angles θ and three β parameters

Using this modified action likelihood, the BNIRL sampling process is parameter-

ized by only the CRP concentration parameter, η, and the action comparison scaling

parameter, β. The BNIRL Gibbs sampling process is described in Algorithm 1.

After some preliminary testing with the BNIRL algorithm, a parameter grid was

constructed with several values of η and β to assess the parametric sensitivity of the

BNIRL approach on excavator operation data. The training dataset is shown as a

3-dimensional quiver plot in Fig. 3.2. The BNIRL algorithm was executed on state

observations in the 4-dimensional actuator space, however the forward kinematics are

used henceforth for the sake of visualizing the results in 3-dimensional space as the

position of the end-effector. The action input sequence was the computed velocity

of each actuator. Although in this scenario we also have direct access to the joystick

inputs of the operator, these inputs would need to be scaled appropriately before
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Algorithm 1 Gibbs sampling for BNIRL [42]
1: function Gibbs-Sampler(O, η, α,K)
2: for each Gibbs sampling sweep k < K do
3: for each observation Oi = (si, ai) ∈ O do
4: for each current subgoal partition jk do
5: p(zi = j|z−i, Oi)← p(zi = j|z−i)p(ai|si, zi) . Probability of

assignment to subgoal j from Eq.
6: end for
7: p(zi = k|z−i, Oi)← p(zi = j|z−i)p(ai|si, zi) . Probability of a new

randomly drawn subgoal
8: zki ∼ P (zi|z−i, Oi) . Sample partition assignment from normalized

probabilities in lines 5 and 7
9: end for

10: end for
11: return assignment vectors z1:K for each iteration
12: end function

using the action comparison likelihood. For instance, since we are concerned with

the direction of the action in the actuator space, each joystick input would need to be

scaled to the magnitude of velocity that it produces. Each Gibbs sampling process

was run for 400 iterations, and the first 40 samples were discarded for burn-in. The

posterior partition assignment modes (subgoals) for selected pairs of parameters are

illustrated in Fig. 3.3, where all observed states are illustrated as colored circles

and the resulting subgoal configurations are shown as wireframe excavator arms. A

summary of the number of unique posterior modes (i.e., number of subgoals) for each

parameter set is shown in Fig 3.4.
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Figure 3.2: Observations in training data; states are circles, and actions are repre-
sented as vectors from that state
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Figure 3.3: Resulting subgoals from BNIRL algorithm with varying parameters

1 2 3 4 5
Action Likelihood Scaling Param. α

10
3

10
2

10
1

10
0

10
1

10
2

C
o
n

ce
n

tr
a
ti

o
n

 P
a
ra

m
. 
η

Number of subgoals for parameter set (η,α)

0

2

4

6

8

10

12

Figure 3.4: Posterior subgoal counts for a grid of parameter sets

39



The BNIRL generative model presupposes that the discovered subgoals are dis-

tinct states which must be selected from observation set. However, in practice op-

erator subgoals corresponding to earthmoving manipulation tasks may actually be

distributed over, for example, the volume of a pile of dirt. Therefore, reforming

the representation of subgoals from a set of waypoints to a set of distributions of

waypoints may offer a more general representation of the task.

3.1.4 Dirichlet Process Means IRL

Using the reward partitioning framework of BNIRL, Maske et al. presented DP-

MIRL, which assumes a Dirichlet process Gaussian mixture model over subgoal lo-

cations [47]. By assuming that the operator also acts as closed-loop controller, the

action likelihood reduces to a measure of proximity to the subgoal. The DP-means

clustering algorithm was presented by Kulis and Jordan and extends the popular k-

means clustering technique by exchanging the specification of the number of clusters

k with a cluster penalty parameter, λ [48].

Maske also introduced the notion of action primitives, which merge the demon-

stration states into a more compact sequence of discrete motion classes. To form

action primitives, the computed velocities of each actuator are clustered via k-means

with k = 3, where the three clusters naturally correspond to positive, negative, and

near zero velocity. A parameter η is introduced to limit the variance of the zero ve-

locity cluster. For a system of m actuators, the action primitive at each sample is a

m-tuple composed of the cluster labels for each actuator. For instance, by assigning

arbitrary numerical labels for each actuator direction cluster

C = {1, 2, 3}
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then the set of actions may be written as

A = Cm

where the ith action would be

ai = (c1, c2, ..., cm), cj ∈ C

and there are |A| = |C|m = 3m possible action primitives.

The observations at the beginning of each new action primitive are merged to form

a new observation set, O. Next, the DPMIRL algorithm uses a priori knowledge

of objects of interest in the workspace to pre-partition the data, by minimizing the

Euclidean distance to an object of interest. Therefore, with k objects of interest, the

algorithm returns a minimum of k subgoals. The DP-means algorithm is shown in

Algorithm 2.

In implementing the DPMIRL algorithm on the excavator, we utilize a similar

segmentation of observation data, defining 3 classes of motion for each actuator.

Rather than clustering the actuator velocities, a simple piecewise labeling function is

used: velocities within a certain threshold of zero are null actions, and the remaining

positive and negative velocity time indexes are grouped into positive actions and

negative actions, respectively. Each actuator motion class is arbitrarily assigned an

integer label: 1, 2, and 3 for negative, neutral, and positive velocity, respectively.

Labeled velocity data for each actuator of a manually operated trial on the excavator

is shown in Fig. 3.5. Considering the four main actuators, we have |A| = |C|m =

34 = 81 possible classes, although less than half of these classes occur in a typical

trial.
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Algorithm 2 DP-Means IRL [47]
1: function DP-Means-Clustering(O, λ,M,K)
2: for each object of interest mj ∈M do
3: for each state si do . pre-partition data
4: if j = arg mink ‖si −mk‖ then . if object mj is closest to state si
5: zi ← j . assign state si to partition j
6: end if
7: end for
8: for each iteration of DP-Means k < K do . find subclusters at each

object mj

9: run DP-Means for states in partition j to obtain subclusters Cj =
{cj1, ..., cjk} . See Ref. [48]

10: end for
11: for each state observation si do
12: assign zi a unique label for all subclusters cjk
13: end for
14: end for
15: return subcluster assignment vector z
16: end function

Since it utilizes the Euclidean norm and locations of points of interest, DPMIRL

is much better suited for clustering observations in the end-effector domain. The DP-

MIRL algorithm was run on the same training dataset as before, except transformed

from the actuator space to the Cartesian end-effector space (XYZ). The DPMIRL

algorithm implementation is shown in Algorithm 2. The results are illustrated in

Fig. 3.6.

Although DPMIRL does produce a nice distance based clustering of states in the

demonstration set, the algorithm is only effective in the end-effector space, and does

not directly incorporate information in the operator’s action.
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3.1.5 Changepoint Gaussian Mixture Model Clustering

A different perspective on subgoal identification involves considering states where

the machine velocity changes abruptly, which we will call changepoints. The impetus

for a changepoint may be internal to the operator or environmental, and could include

the following:

1. the operator’s subgoal has changed

2. the operator is pausing

3. the operator has given an erroneous input

4. the operator has decomposed a subgoal into multiple consecutive movements,

between which there is an abrupt change of command

5. the location of an object in the workspace has changed

We wish to capture the distribution of states in category 1, while disregarding items

2-5. However, it is reasonable to suggest that items 2-5 may be somewhat randomly

distributed through a demonstration dataset, especially with a more experienced

operator. Under this assumption, over many cycles of a task the changepoints in

categories 2-5 may only appear as random outliers. For example, consider the single

dig cycle illustrated in Fig. 3.7. The color of the markers reflect the Euclidean norm

of the acceleration vector. The acceleration norm appears to effectively identify the

vertices of the operators path. However, the interaction of the bucket tool with the

soil does cause some spikes in acceleration at the bottom of the digging process (lower

left).

Intuitively, the change points are states where the velocity of the end-effector

undergoes an abrupt change. More precisely, change points are states where the
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Figure 3.7: States and acceleration vector norms for a manual truck loading operation

`2-norm of the acceleration exceeds a threshold parameter ā

C = {ai : ‖ai‖2 > ā, ∀ai ∈ A} (3.10)

The threshold parameter can be determined by finding the value at the third quartile

of the data (or any quantile), such that Eq. (3.10) simply selects the accelerations

from the upper quartile.

Once the change points are separated from the trial observations, they can be

clustered using a Gaussian mixture model with a Dirichlet process prior and vari-

ational inference algorithms such as scikit-learn’s BayesianGaussianMixture [49].

The variational inference algorithm requires an upper bound on number of clusters

and a weight concentration prior, γ. The changepoint clustering process is shown in

Algorithm 3.

Results from the changepoint clustering algorithm are illustrated in Fig. 3.8.
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Algorithm 3 Changepoint Gaussian Mixture Model
1: function CP-GMM-Clustering(O, q, γ)
2: ai ← ‖ si−1−2si+si−1

T 2
s

‖2 . compute norm of acceleration vector for each state
using central finite difference

3: ā← compute acceleration at qth quantile . e.g. q = 75%
4: for each index i do
5: if ai > ā then push state si to list of changepoints C
6: end if
7: end for
8: z,µ1:k,Σ1:k ← BayesianGaussianMixture(C, γ) . run variational inference

on changepoint states and store cluster labels, means, and covariances
9: return cluster labels z, cluster means µ1:k and covariances Σ1:k

10: end function
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Figure 3.8: Changepoint clustering results
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3.1.6 Summary of Task Identification

In summary, both the BNIRL and DPMIRL introduce useful extensions of the

IRL framework, for capturing underlying task objectives from complex demonstra-

tion data. The assumption of multiple subgoals simplifies the search for candidate

reward functions and creates a useful abstract representation of the task. Bayesian

Nonparametric IRL (BNIRL) utilizes an action comparison likelihood which creates

meaningful subgoal assignments based on the action direction, but does not incor-

porate a distribution over subgoal locations.

DP-Means IRL (DPMIRL) simplifies the action likelihood by assuming the opera-

tor already behaves as a closed-loop controller, and the remaining likelihood depends

only on proximity to the subgoal. DPMIRL also pre-partitions the data with objects

of interest in the workspace, and outputs subgoal clusters rather than distinct sub-

goal locations. However, this approach makes no use of the information contained in

the operator’s action when seeking subgoals.

Finally, changepoint Gaussian Mixture Model clustering (CP-GMM) examines

only states at time instances when the acceleration magnitudes exceed a certain

threshold. These states, deemed changepoints, are then clustered with a nonparamet-

ric Gaussian mixture model, yielding cluster means and covariances in the actuator

space.

3.1.7 Stochastic Transition Matrix

Several learning methods have just been discussed for discovering either the lo-

cation or distribution of locations of a subgoal from demonstration data, however,

the order in which subgoals or subgoal distributions are drawn during a task has

not been explicitly considered. In our forthcoming discussion of real-time prediction,
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Algorithm Inputs Outputs
BNIRL
[42]

states and actions in actuator
space, hyperparameters η and β

partition labels for all states cor-
responding to the index of the
subgoal state

DPMIRL segmented states and actions in
end-effector space, distance hy-
perparameter λ, points of interest
in end-effector space

subgoal labels and subgoal distri-
butions in the end-effector space

CP-GMM segmented states and actions in
the actuator space, acceleration
quantile q

subgoal labels and distributions
in the actuator space

Table 3.1: Summary of task identification algorithms

this ordering can be exploited as a prior probability of subgoal transition, written as

P (zi = k|zprev = j), ∀j, k ∈ K (3.11)

where zi is the subgoal label of the current observation and zprev is the last confirmed

subgoal partition label, which may have occurred at any time index previous to i.

The script K denotes the set of all subgoal partition labels. The transition probability

can be stored in a stochastic matrix, T , where element Tjk describes the probability of

transitioning from subgoal j to subgoal k. This matrix can be built empirically from

any of the previous subgoal discovery techniques by counting the transitions between

subgoal labels, setting element Tjk equal to total number of observed transitions from

subgoal j to subgoal k, and normalizing the rows of the matrix, such that

|K|∑
k=1

Tjk = 1 (3.12)
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3.2 Prediction

Once a suitable representation of the task has been formed using the aforemen-

tioned techniques, the task model may be utilized to predict the operator’s current

subgoals in real-time. Three approaches are presented and compared here: 1) a deter-

ministic finite-state machine (FSM) which monitors the machine state and operator

input to trigger new subgoals, 2) a probabilistic model which compares the current

action with the direction to the subgoal location, and 3) a second probabilistic model

which also considers the uncertainty in subgoal locations to predict the likelihood of

each subgoal. In all cases the set of possible inputs for real-time prediction are the

following:

• the current state-action pair, Oi = (si, ai)

• previous state-action pairs, O0:i−1 = {(s0, a0), ..., (si−1, ai−1)}

• a task model determined using one of the techniques in the previous section,

either represented as a collection of distinct points, or a collection of Gaussian

distributions.

3.2.1 Deterministic Prediction

Consider the truck loading task represented by six subgoals: above the pile, at

the pile, after the dig, after material is lifted, the position over the truck, and after

dumping material in the truck. The order in which the operator seeks these subgoals

during nominal operation is fairly consistent, and could inform the mechanism which

predicts the current subgoal of the operator. For a simple deterministic prediction

scheme which exploits this ordering, we can define a Finite-State Machine (FSM),

which uses state and action triggers to iterate through the subgoals, and boolean

states of the blending parameter. Thus, if there are K subgoals, the prediction FSM
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has 2K states, defined by

S : sk,α

k ∈ {1, ..., K}

α ∈ {αo, 0}

where αo is the designed blending parameter.

Since the actual operator subgoals may vary during operation with changes in

the workspace, a region is defined around each subgoal location, which we refer

to as termination sets. When the machine pose lies within a termination set, the

state machine transitions to the next subgoal in the task. Termination sets are

complemented by initiation sets, which are subsets of the input space, and toggle

the blending parameter state. If the joystick command from the operator lies within

the initiation set of the current subgoal, then blending is active. Otherwise, blending

does not occur.

The termination set for subgoal k can be formally defined as

Tk = {ζ : |ζki − ζi| ≤ σi} (3.13)

where ζ is a vector of the current actuator displacements, ζki is the displacement of

the ith actuator at the kth subgoal, and σi is a design parameter for the size of the

termination set. The parameter, σi, can be selected from the variance of subgoal

clusters. The termination sets employed for the truck loading task are illustrated in

Fig. 3.9 in the end-effector workspace.

Overlapping termination sets cause the prediction state to not be uniquely de-

fined, and must be avoided. In contrast, termination sets too narrow can result
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Figure 3.9: The 6 termination sets illustrated in the workspace. Note that the sets
are defined in the actuator space, from which the forward kinematics have been used
to illustrate these regions in the end-effector space.

in missed subgoal cues. Further, large termination sets reduce the blended shared

control assistance length.

The initiation sets can be defined as

Ik = {ū : |ūj − ūj,k| > 0} (3.14)

where ūj is the operator input on the jth input axis, and ūj,k is the initiation thresh-

old. The prediction FSM states for subgoal k are illustrated in Fig. 3.10, and a

general implementation of the prediction update algorithm is shown in Algorithm 1.

This deterministic prediction strategy was implemented within a BSC architec-

ture and tested with human operators, for which the results are shown in Section

5.1. This strategy also simply degrades to manual control if a termination set is

missed by the predictor. However, this approach does not produce any probability
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Figure 3.10: Prediction state diagram for subgoal k. Since the task is cyclic, the
conventions k− 1 and k+ 1 are used here merely for convenience, and actually refer
to the previous and next subgoals, respectively.

Algorithm 4 FSM Prediction Update
1: function FSM-Update-Prediction(ζζζ, ū)
2: for each subgoal termination set Tk do
3: if ζζζ ∈ Tk then . if in termination set of any subgoal k
4: subgoal← (k + 1) % K . iterate to next subgoal
5: end if
6: end for
7: if ū ∈ Ik then . if in initiation set of current subgoal k
8: α← αo . activate blending
9: else
10: α← 0 . otherwise deactivate blending
11: end if
12: return subgoal, α
13: end function

or confidence in the identified subgoal, a measure which may be useful in the blending

step of our control scheme. Further, the designer is required to identify and encode

some information about the task in the form of initiation sets, which has not been

discovered algorithmically through the IRL process.
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3.2.2 Probabilistic Action Comparison Prediction

The Bayesian model from the previous task learning sections can be revisited to

produce a statistical distribution over subgoal assignment labels, given by

P (zi = j|z−i, Oi) for j ∈ K

where Oi is the ith observation, zi is the subgoal assignment at observation i, z−i

are all other subgoal assignments in the demonstration, and K is the complete set

of subgoal partition labels. However, we need to be able to compute the posterior

probability in real-time. One natural solution is to transform the statistical model

from our Bayesian nonparametric IRL implementation with

p(zi|zi−1, Oi)︸ ︷︷ ︸
assignment probability

∝ P (zi|zi−1)︸ ︷︷ ︸
transition model

P (ai|si, zi)︸ ︷︷ ︸
action likelihood

(3.15)

where we have exchanged the nonparametric CRP prior with a transition model

derived from operator data, and zi−1 is the simply last confirmed subgoal†. The

action likelihood remains as stated in Eq. (3.8), comparing the vector from the current

state, si, to the partition subgoal, gzi, with the current action vector, ai.

To implement this prediction scheme, the action likelihood is computed over only

the subgoal locations, gj , or means of the subgoal distributions, µj , for j ∈ K.

However, if from our task learning process, we have a representation of subgoals

which is a mixture of probability distributions over the state space, then we are

unable to incorporate the variance of these subgoal distributions with this approach.
†confirming that the operator has visited a subgoal is a significant challenge, as discussed in

Ch. 6
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3.2.3 Multivariate Normal Action Comparison Prediction

In order to utilize the full subgoal information generated in the DPMIRL or

changepoint clustering algorithm, two modifications to the Bayesian model above

can be proposed:

1. Subgoals are drawn each cycle from a multivariate normal (MVN) distribution,

such that the location of the subgoal zi in the actuator space is

gzi ∼ N (µzi ,Σzi)

where µzi and Σzi are the multivariate normal mean and covariance which

are discovered during the GMM clustering step of the changepoint clustering

algorithm.

2. The action likelihood should prioritize any actions which move towards the

largest mass of this subgoal distribution, rather than just towards the mean of

the subgoal distribution.

Our goal is to define the likelihood that a particular action will be taken given

the subgoal zi and its MVN distribution, N (µzi ,Σzi). This can be achieved by inte-

grating the multivariate probability density function over a custom domain, denoted

D. The domain is defined in the actuator state-space coordinates D ⊂ Rm according

to the following:

On axes in which the action input is null, the domain is infinite (corresponding

to marginalizing out the null input axes). On the active input axes the domain is

semi-finite, bounded by the current state and infinity in the action direction. Math-

ematically, the domain D is defined by:

54



D = D1 ×D2 ×D3 ×D4 (3.16)

where

Dj =


[sij,+∞) aij > 0

(−∞, sij] aij < 0

(−∞,+∞) aij = 0

(3.17)

Then the action likelihood becomes

p(ai|si, zi) =

∫
...

∫
D
fzi(x1, x2, ..., xm) dx1...dxm (3.18)

where fzi(x1, x2, ..., xm) is the probability density function (PDF) of subgoal zi

fzi(x) =
exp

(
−1

2
(x− µzi)TΣzi

−1(x− µzi)
)√

|2πΣzi |
(3.19)

This integration can be computed by Alan Genz’s multivariate normal FOR-

TRAN routines in the SciPy package [50]. However, in most cases the action will

only be along one or two unit vector directions, such that for the other directions

aij = 0. In this case, the domain in the jth direction is infinite. Computing this

integral simply corresponds to marginalizing out the jth variable. Therefore, with

multivariate normal distributions we can simply omit the covariances of marginalized

variables from the covariance matrix and compute the integral over the remaining

variables.

Two example state-action pairs are given in Fig. 3.11 in a 2-dimensional do-

main with three multivariate normal subgoal distributions. The resulting subgoal

likelihoods are shown below each plot.
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Figure 3.11: Two test cases of the Gaussian action likelihood

3.2.4 Prediction Comparison and Summary

A single dataset consisting of nine truck loading task cycles was used to evaluate

each prediction method with the same predefined subgoal decomposition, which con-

sisted of six subgoals clustered with the GMM algorithm in actuator space. In the

case of the finite state machine (FSM-P) and action comparison (AC-P) methods,

the subgoal means were used as subgoal locations, whereas the multivariate normal

(MVN-AC-P) technique utilized both the means and covariances. First the data

were hand labeled according to their position in the task, and then the observations

were iterated over, storing the predicted subgoal and subgoal probabilities where
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applicable. The results are shown in Table and the labels are illustrated in Fig. 3.12.

Table 3.2 illustrates the total accuracy of each method compared to the hand labeled

data. If a threshold of 70% confidence is used in the probabilistic methods before

blending occurs, we can also discuss the number of blended samples and blending

active accuracy of the each mode, which is also shown in the table.

Figure 3.12: Comparison of prediction methods

The FSM-based prediction (FSM-P) appears less accurate but is highly accurate

when the blending is active (i.e., when the input is within the initiation set of the

current subgoal), which is only about half of the task. The action comparison (AC-

P) and multivariate normal action comparison (MVN-AC-P) methods both perform
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Method Total Accuracy Blending Active Accuracy
(Pct. of Trial Active)

Deterministic FSM (FSM-P) 60.9% 94.9% (55.5%)
Action Comparison Prediction
(AC-P)

78.9% 79.7% (97.1%)

Multivariate Normal Action
Comparison Prediction (MVN-
AC-P)

78.9% 80.59% (94.8%)

Table 3.2: Summary of prediction algorithm performance

very similarly due to sharing the same stochastic transition matrix, with about 80%

accuracy and blending nearly all of the time. Increasing the active blending threshold

would produce higher accuracy at the expense of less time spent assisting, and these

results are only meant to illustrate these trade-offs. Also, these trials do not expose

how each method responds to off-nominal situations, which will remain the subject

of further investigation and is beginning to be addressed in published research [51].

A qualitative summary of prediction methods is presented in Table 3.3.

Method Outputs Limitations
Deterministic FSM
(FSM-P)

subgoal and boolean blend-
ing parameter

does not quantify confi-
dence in prediction

Subgoal Action Com-
parison (AC-P)

probability vector for all
subgoals

does not consider the distri-
bution of subgoals

Multivariate Normal
Action Comparison
(MVN-AC-P)

probability vector for all
subgoals

computationally expensive,
requires covariances of each
subgoal

Table 3.3: Summary of subgoal prediction algorithms
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3.2.5 Wireframe Simulation

Testing many different prediction algorithms requires a method for rapidly pro-

totyping and evaluating different strategies. Rather than deploying each algorithm

to the experimental model which will be presented in Chapter 5, a simple wireframe

simulation was developed as a drop-in replacement for the scale model. The real-

time simulator is purely kinematic, mapping joystick inputs to a velocity on each

actuator, but allows the operator to explore resulting prediction for any combination

of states and actions. The interface is shown in Fig. 3.13, with printed values for

subgoal likelihoods, posterior probability, maximum a posteriori subgoal, operator

input, control input, and blended command.

Figure 3.13: A wireframe kinematic simulation for developing prediction algorithms
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4. TRAJECTORY CONTROL AND BLENDING

This chapter addresses the generation of minimum-time smooth trajectories to

seek the subgoals of the operator, and the low-level controller designed to track the

trajectories. Then, the determination of the blending parameter is discussed along

with a method of incorporating the prediction confidence in the blending law.

4.1 Trajectory Generation

In the deterministic BSC approach, once a new subgoal is identified, a smooth

quintic polynomial trajectory is generated to that subgoal, using the velocity and

acceleration-limited minimum time trajectory. Quintic polynomial templates are

standard for smooth point to point motion within robotics contexts, and a good

overview of various point to point trajectory generation techniques is given by Spong

[43]. First, the maximum velocity and acceleration are used to determine a minimum

trajectory duration on each actuator. The longest duration (i.e., slowest actuator

movement) is used to determine quintic trajectories for all actuators.

The initial and final velocities and acceleration are set to zero, while the initial

and final machine poses, ζi and ζf , are set to the current state and the subgoal,

respectively. The initial time is set to 0, and the final time tf is the duration de-

termined previously. The coefficients of the quintic polynomial trajectory for each
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actuator are given by the columns of the coefficient matrix, C, computed as

C = Q−1L =



1 ti t2i t3i t4i t5i

0 1 2ti 3t2i 4t3i 5t4i

0 0 2 6ti 12t2i 20t3i

1 tf t2f t3f t4f t5f

0 1 2tf 3t2f 4t3f 5t4f

0 0 2 6tf 12t2f 20t3f



−1 

ζi

0

0

ζf

0

0


(4.1)

An example trajectory is given in Fig. 4.1 in the following section.

4.2 Low-Level Control

A discrete-time PI controller was developed and tuned as a low-level controller

for trials with BSC. The continuous-time parallel PID transfer function is given is

the Laplace domain by

C(s) = KP +
KI

s
+KDs (4.2)

Applying Tustin’s (bilinear) transformation the discrete time control law in the Z-

domain is

C(z) =
αz2 + βz + γ

z2 − 1
(4.3)

61



where the coefficients are precomputed according to

α =
4KD +KIT

2 + 2KPT

2T
(4.4)

β =
2KIT

2 − 8KD

2T
(4.5)

γ =
4KD +KIT

2 − 2KPT

2T
(4.6)

After applying the shift operator and taking the inverse Z-transform, the discrete

control law is given by

u[k] = αe[k] + βe[k − 1] + γe[k − 2] + u[k − 2] (4.7)

Deadband compensation is achieved by mapping the normalized control input, u,

according to

f : u 7→ (udb sgn(u) + (1− udb)u) (4.8)

where udb is the positive normalized deadband width as discussed in Sec. 5.1.2. This

function maps the interval, u ∈ [−1, 1], to two disjoint intervals and the zero element,

i.e., f(u) ∈ [−1,−udb) ∪ {0} ∪ (udb, 1].

The Ziegler-Nichols tuning method was used initially to determine the gain val-

ues, after which the gains were adjusted by hand to reduce oscillations about the

setpoint. The resulting tracking performance of Ziegler-Nichols tuning with dead-

band compensation for point to point quintic trajectories is illustrated in Fig. 4.1.

Performance degrades significantly when all actuators are moved simultaneously, in

which case, flow limiting conditions cause certain actuators to receive a large portion
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of the fluid. This issue is likely to be less limiting in full-scale excavator equipment,

due to the typical use of multiple variable-displacement (axial-piston) pumps and

load sensing circuits to meet flow demand.
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Figure 4.1: Tracking performance for simultaneous tracking on all actuators; the stick
actuator receives low flow priority and cannot meet tracking demands, even with the
valve saturated
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4.3 Blending of Control Inputs

Control blending is the process by which the operator input (human agent, or

HA) is combined with the output of the previously defined automatic controller

(computer agent, or CA). As a review, in BSC the blending step is achieved through

the following law

u = ū+ α(u∗ − ū) (4.9)

or alternatively

u = αu∗ + (1− α)ū (4.10)

where ū is the human operator command, u∗ is the automatic control input, α is a

variable blending parameter such that

α ∈ [0, 1] (4.11)

Many researchers have sought to develop an expression for the blending parameter

which continuously and smoothly trades authority between the two agents. However,

at this point, it is not clear which information to use as a basis for this relationship.

On Zermelo’s ship navigation problem, Enes experimented with using a combination

of proximity to the goal state and action comparison with the optimal control input,

given by∗ [52]

α = max

(
0, 1− d

d0

)
max

(
0, 1−

(
∆

∆0

)2
)

(4.12)

where d0 is a distance threshold and ∆0 is an input deviation threshold. Under this

relation the control becomes fully manual if the distance from the operator to the

goal exceeds d0 or the command input deviates too far from the optimal control input
∗original publication used e in place of α, they are exchanged here for the sake of clarity
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(measured by ∆).

Some authors have used proximity to subgoals alone as a basis for the blending

parameter, however proximity alone cannot discriminate between seeking a subgoal

and departing from the same subgoal. Therefore, proximity as a sole means of

determining the blending parameter is not practical.

As discussed in Sec. 1.3, Dragan and Srinivasa contributed the heuristic that the

blending parameter should reflect the degree of confidence with which the operator’s

goal has been predicted. This confidence may be expressed either as the probability

of a certain subgoal or as the entropy of the subgoal probability distribution.

Using either of the probabilistic prediction methods presented in Secs. 3.2.2 and

3.2.3, the prediction confidence can be directly related to the blending parameter α.

After normalizing the assignment posterior of Eq. (3.15) for all subgoals, we are left

with a discrete distribution over subgoal assignments

P (zi = j|zi−1, Oi) for j ∈ K (4.13)

where j is a subgoal label from the set of all subgoal labels K.

MAP Probability as Confidence. Using the following conditions, the maximum a

posteriori (MAP) subgoal probability can be mapped to the value of alpha parameter.

First, a minimum threshold probability is defined p0, and a target alpha interval,

A = [αl, αh], where A ⊂ [0, 1]. If the MAP subgoal assignment probability exceeds

the blending threshold p0, that subgoal is designated the current subgoal, and the α

parameter is defined by

α = f(pMAP ) (4.14)
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where the MAP subgoal probability pMAP is defined as

pMAP = max
j
P (zi = j|zi−1, Oi) (4.15)

and f is the affine mapping from the interval [p0, 1]→ [αl, αh], given by

f(x) = (x− p0)
(
αh − αl
1− p0

)
+ αl (4.16)

As one function, the blending parameter α can be defined piecewise by

α =


f(pMAP ) pMAP ≥ p0

0 pMAP < p0

(4.17)

Inverse Entropy as Confidence. Alternatively, using the statistical entropy defi-

nition of confidence, the blending parameter can be defined as

α = g

(
H(zi)

log |K|

)
(4.18)

where H(zi) is the statistical entropy of the subgoal assignment distribution

H(zi) = −
|K|∑
j=1

P (zi = j|zi−1, Oi) logP (zi = j|zi−1, Oi) (4.19)

The logarithm in the denominator of Eq. (4.18) serves to normalize the range of

statistical entropy using the number of subgoals in the model, |K|, and must share

the same base of the logarithm used in Eq. (4.19). This way the argument of the
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mapping function will always follow

H(zi)

log |K|
∈ [0, 1] (4.20)

However, a high entropy should map to a low confidence, so the mapping function

must invert the interval, given by

g(x) = (x−H0)

(
αl − αh
1−H0

)
+ αh (4.21)

where H0 is the blending threshold for normalized entropy below which blending is

active, and the high and low bounds of the blending parameter have been exchanged

from Eq. (4.16). A piecewise definition of the inverse entropy approach is given by

α =


g
(
H(zi)
log |K|

)
H(zi)
log |K| ≤ H0

0 H(zi)
log |K| > H0

(4.22)

Composing either determination of the blending parameter with the prediction

approaches developed in Sec. 3.2 produces an arbitration step which is very capable

at either determining the current subgoal from a fixed set, or disabling any control

intervention. However, there are still potential sources of poor performance in real-

world excavation tasks, which must be addressed if a shared control architecture

is to be implemented on a physical excavator and tested with human operators.

For instance, the subgoal set may become inaccurate, subject to a changing work

environment. Further, the task model may be incomplete.

For these reasons, it is useful to impose some practical constraints on the imple-

mentation of a blending law and the determination of the blending parameter:

1. Human-in-the-loop (HIL) constraint : At all times, the operator is present in
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the control loop.

2. Input responsive constraint : The input to the plant (hydraulic valves and swing

motor) is null if the operator’s joystick input is null.

3. Non-conflicting constraint : The CA may not oppose the HA,

i.e., if sgn(ū) 6= sgn(u∗), then α = 0, and control is fully manual.

The first constraint is realized by imposing a conservative upper bound on the alpha

parameter, e.g., αh ≈ 0.7. The second is already achieved in the FSM-P prediction

scheme. Further, with either probabilistic prediction method, if the joysticks are re-

leased, the action likelihood reduces to zero and blending cannot be active. The third

and final constraint is the most severe, and sacrifices many potential performance

improvements, such as reducing operator overshoot or overdigging. Handling con-

flicting intent is a key problem in artificial intelligence domains, and one that merits

its own discussion. However, this third constraint allows a failure of the prediction

mechanism to not become a system failure, by never counteracting the operator’s

command.

68



5. EXPERIMENTAL DESIGN AND RESULTS∗

This chapter introduces a series of experiments conducted in order to evaluate the 

presented task learning, prediction, and BSC control methods. A 1/12th scale fully 

hydraulic excavator was instrumented for on-board embedded control and integrated 

with a remote operator interface to send joystick commands. Trials were conducted 

with three operators and the deterministic prediction method presented previously 

in Sec. 3.2.1. The results of each trial are analyzed for improvements in fundamental 

performance metrics such as cycle time and digging efficiency, as well as for practical 

limitations such as scalability and operator comfort.

5.1 Experimental Setup

All digging experiments were conducted on an instrumented 1/12th scale electro-

hydraulic remote-controlled excavator, illustrated in Fig. 5.1 and presented by sub-

system in the following section.

5.1.1 1/12th Scale Hydraulic Excavator

The 1/12th scale electro-hydraulic remote-controlled excavator (RC4WD 4200XL) 

is designed with all functions controlled by an 8-channel 2.4 GHz receiver. The two 

independent tracks and swing function are coupled to three 12 V brushed DC mo-

tors, which are controlled by three brushed electronic speed controllers (BESCs). 

The hydraulic pump is driven by a brushless DC motor, controlled by an electronic 

speed controller (ESC). Three DC servomotors (Tower Pro MG945) are mounted to 

an aluminum valve block and coupled to three closed-center rotary valves.

* Part of this section is reprinted from "Blended Shared Control of a Hydraulic Excavator" 
by M. Allain, S. Konduri, H. Maske, P. Pagilla, and G. Chowdhary, "Blended Shared Control 
of a Hydraulic Excavator," in International Federation of Automatic Control, 2017.
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Figure 5.1: The 1/12th-scale instrumented hydraulic excavator

5.1.2 Instrumentation

The task of instrumenting the scale excavator consisted of three main steps: 1)

identification, 2) control, and 3) measurement.

Identification. Before a controller can be implemented, the valve control signals

must be balanced so that the valves operates identically in both directions (extension

and retraction of the cylinder). Also, the deadband of each valve must be identified.

Actuating each valve with a specific pulse width modulation (PWM) duty cycle and

measuring the steady-state velocity response of the actuator yields the curves in Fig.

5.2. The steady-state response of the swing motor in rad/s is also illustrated. The

valve deadbands and the duty cycles corresponding to the midpoint of each valve

vary across all valves, and these valve parameters are stored in a data structure and

utilized by the control software. Observing the steady-state response curves, the

width of the deadband (illustrated as a rectangular patch) is significant compared to
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the control input range where the actuator experiences motion. Further, the steady-

state velocity is maximized at a specific valve position, and in the case of the boom

actuators, can even decrease with larger control input.
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Figure 5.2: Steady-state actuator velocity as a function of PWM duty cycle

Control. The BeagleBone Black (BBB) RevC board, based on the TI Sitara

system on a chip (SoC) was selected as an embedded controller for the excavator.

The BBB is a capable development platform with an AM335x 1GHz ARM Cortex-A8

processor (TI), which excels in memory access speed and has 69 configurable general-

purpose inputs and outputs (GPIOs). Control development and experimentation

were conducted on top of a standard Linux-kernel based operating system (Debian

7.5).

The main hydraulic servo valves and swing function are controlled via an on-board
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BeagleBone Black running real-time control algorithms in Python. The Python

scripts are heavily factored and compiled ahead of time to support the computa-

tionally demanding prediction and control algorithms. Further, most computation

heavily utilizes the efficient data types and routines in the numerical Python package

(NumPy) to improve execution speed.

Measurement. A quadrature encoder was equipped on the swing motor shaft

to retrieve incremental measurements of swing rotation. The quadrature encoder

counting is managed by the eQEP module available on the BBB.

Several different linear position sensors were considered for providing feedback of

actuator displacements. Preference was given to absolute position sensors to avoid

the homing routines and drift associated with incremental encoders. In the earth-

moving equipment industry, Komatsu has been issued a patent for a roller-based

displacement sensor, which is mounted on top of the cylinder and rolls along the hy-

draulic piston rod [53]. The roller revolutions can then be counted by an incremental

encoder, or a multi-turn potentiometer. After preliminary tests, this technique is

difficult to reproduce at reduced scale due to the lower friction between the rod and

roller relative to the internal friction of available encoders and potentiometers.

Instead, custom string potentiometers were adapted from an open-source design

[54] which offered cost-effective and sufficiently precise absolute position measure-

ment. The design was modified to support mounting on the hydraulic cylinders.

Three identical string potentiometers assemblies were manufactured from ABS plas-

tic using a commercial 3D printer and mounted to each cylinder. The components

are illustrated in an expanded view in Fig. 5.3a, showing the 1) hydraulic cylinder,

2) braided nylon string, 3) spring housing, 4) spool, 5) case, and 6) 5k Ω multi-turn

precision potentiometer (Bourns 3590S-2-502L) and the collapsed view in Fig. 5.3b.

The string potentiometers house a spool which is tensioned by a radial spring and
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mounted to the shaft of a precision multi-turn potentiometer.

(a) Expanded view (b) Assembled view

(c) String potentiometer mounted to the excavator

Figure 5.3: String potentiometer assembly

Example calibration curves can be seen in Fig. 5.4 for the three string poten-

tiometers. In initialization of the control script, a look-up table (LUT) is formed from

the calibrated value pairs, so that in real-time the table can be linearly interpolated

to find the current displacement of the actuators.

A simple PCB was designed in EAGLE (Autodesk Inc.) to provide a robust point

of connection for I/O (PWM, quadrature encoder, and potentiometer analog inputs),

which can be seen in Fig. 5.5.
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Figure 5.5: BeagleBone Cape PCB

5.1.3 Operator Interface

Human subjects operated the excavator using two joysticks (Thrustmaster TM-

16001) with the standard 4-axis input mapping found in full-scale hydraulic exca-

vators. Joystick inputs were then transmitted via UDP from a remote computer

terminal to the on-board processor at a rate of 20 Hz.

1the TM-1600 joysticks are ambidextrous, so that one can be reconfigured to a left-handed grip
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Figure 5.6: Overview of experimental setup

Figure 5.7: Operator view of workspace
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5.2 Deterministic BSC Trials

Three sets of experiments were conducted for the truck loading task. For the

first set of experiments, manual trials provided a benchmark for operator skill level.

Next, autonomous trials established a baseline for machine capability with respect

to cycle time. Finally, the blended trials utilize blended shared control with the

deterministic prediction method summarized in Sec. 3.2.1. The actuator positions

over time and the mass of dirt moved were recorded in all trials. In addition, the

controller, prediction, and joystick states were recorded over time, where applicable.

In the manual control operation, subjects were given the task objective and the

opportunity to practice operating the excavator for a short duration. After the

practice period, the subjects were asked to perform 5 task cycles, which constitute

one trial. Each of the 3 subjects performed 3 trials under manual control, and 3

trials under blended shared control. Under blended shared control, participants were

informed that their command inputs would be augmented continuously, and were

again given time to become familiar with the system. The logical software overview

of the BSC implementation is shown in Fig. 5.8.

In order to establish a baseline for cycle time, autonomous trials were run with

point-to-point trajectories. The end-points of the autonomous trajectories were taken

from real operation data, so that they mimic the variation of the pile depth and

location. The trajectories were optimized offline to minimize the time taken and the

control effort required to complete the task.

The angle of the swing function for three different sample trials is shown in

Fig. 5.9, with vertical markers at the end of each cycle, i.e., when the machine

reaches subgoal 6. For this operator, the BSC controller clearly reduces cycle time,

but this effect was not universal across all operators. In the bottom subplot, the
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Figure 5.8: Logical overview of BSC software

autonomous controller demonstrates a fairly consistent cycle time, nearly half the

length of the manual and blended architectures.

Occasionally during the trials, an operator would bypass a termination set. On

one hand, defining the termination sets in the actuator space eliminates the need

for computationally expensive forward kinematics in real-time. However, since the

position of the tip of the bucket is not uniquely defined by the actuator displacements,

operator subgoals in the end-effector workspace may not be unique in the actuator

space. This means that the distribution of subgoals locations in the actuator space

of the training data may be multi-modal.

Cycle times for manual, blending, and autonomous modes are shown in Fig. 5.10.

Blending does not have a consistent effect on the cycle time, which suggests that this

advantage may vary with the operator style and experience.
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Figure 5.9: Sampled data for the swing actuator in the three operating modes.
Vertical dotted lines denote the end of a cycle, i.e., the end of subgoal 6.

The cycle efficiency is defined as the mass of material moved per cycle time,

for each task cycle performed. An increase in this cycle efficiency was observed for

each operator under BSC. Fig. 5.11 shows the effect of blending on cycle efficiency.

Fig. 5.12 illustrates the effect of BSC on cycle time and cycle efficiency across all

operators. The performance of BSC is superior in both metrics, and the cycle time

distribution is notably more narrow.
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Figure 5.11: Comparison of cycle efficiency for different operators and operating
modes. Cycle efficiency is measured as the mass of material moved in a cycle di-
vided by the cycle time. Higher efficiency is desirable. (M: Manual, B: Blended, O:
Operator)
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Figure 5.12: Comparison of cycle time and cycle efficiency across all operators. (M:
Manual, B: Blended)

Operators were able to become comfortable fairly quickly with the blended control

scheme, with most users practicing only a few minutes. Some considerable task

specific advantages were observed and reported during the trials. In particular,

during a swing operation, which in this case corresponds to shifting operator focus

from the pile to the truck, adjustments of the bucket position and stick actuator

allowed operators to be instantly prepared for the ensuing dump or dig operation.

The effect of these adjustments is that each dig operation can be initiated from the

same state. Also, the material in the bucket was notably better secured after the dig

operation with blending enabled. The detailed parameters of these experiments are

provided in Table 5.1, and a more thorough listing of the kinematic characteristics

of the scale experimental excavator is provided in the tables of Appendix A.
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Task Learning Subgoal Prediction
DP-GMM∗ FSM-P
6 subgoals Tk : {|µi − ζi| ≤ 2

√
Σii}∗

µ1:K ,Σ1:K Ik: 30% of full range∗
α0 = 0

Table 5.1: Experimental parameters for learning and prediction. The trials were run
prior to the development of the changepoint filtering process, so a set of points were
selected from the data and clustered using a DP-GMM. The termination sets were
defined by the mean of the subgoal distribution plus or minus 2 standard deviations
on each actuator, i.e., 2

√
Σii. The initiation sets were identified by observing the

common movements between subgoals and applying a threshold on those actuators
in the subgoal direction.
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6. SUMMARY AND FUTURE WORK

A series of methods have been presented for designing shared control architectures

for hydraulic excavator equipment. The relevant academic literature was presented,

highlighting some of the historical challenges in automating hydraulic earth-moving

equipment and some of the promising new techniques for learning and assisting in

manipulation tasks. The forward and inverse kinematics of an excavator manipula-

tor with fixed tracks have been developed, along with the dynamic equations from

the valve spool position to the equations of motion of the excavator manipulator.

Next, three algorithms for learning task representations from demonstration data

have been detailed and compared. Those same task representations can then be

used to propose methods for on-line prediction of operator subgoal. Given a pre-

dicted subgoal, smooth point to point trajectories can be generated and tracked by a

low-level controller. The magnitude of assistance provided is mediated by a blending

law, which is simply a weighted average of the operator and controller inputs, for

which the weighting can be static or dynamic. Linking a dynamic blending parame-

ter to a probabilistic measure of confidence from our prediction step has the potential

to provide an intelligent and situationally aware control assistance. Finally, an inte-

grated BSC system with a deterministic prediction component was implemented on

a scale model excavator, and tested with human operators, showing improvements

in digging efficiency on each operator and cycle time on some operators.

Some dynamic characteristics of hydraulic actuation were given less emphasis in

this project, for a few key reasons: the scale model hydraulic system is significantly

less complex than a full-scale excavator system, and certain traits and limitations

of the scale-model are not present or already addressed in commercial equipment.
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However, in order to optimize the benefits of a shared control approach, future ex-

periments may need to place more strict requirements on the tracking performance

of low-level controllers. In such a case, the dynamic equations may be useful in de-

veloping and testing more advanced controllers for both the scale model and future

experimental platforms.

More trials with various operator experience levels are required to determine

whether one representation of the task is sufficient for assisting many different oper-

ators. Future iterations of the control approach should also address the possibility

of subgoal locations moving during the task execution. However, care should still be

taken to distinguish learning the task from locating the subgoals, so that the latter

step (locating) can exploit the ordering of subgoals and fixed structure of the former

objective (learning). That said, the motivation for learning to be performed off-line

was largely computational, and the issues of changing subgoal locations and learning

completely new tasks could possibly be better addressed by developing new learning

techniques which can be executed on-line.

Each prediction scheme is conditioned on knowledge of the last subgoal visited

by the operator. This is addressed by defining a region about each subgoal in which

that subgoal can be confirmed, as in the definition of termination sets. However, it

is much more difficult to specify in real-time when or where specifically the subgoal

was reached or the operator switched to a new subgoal. Early attempts at solving

this problem have used complex logic and computed velocities and accelerations, but

will need to be refined for implementation.

Of note, the dynamic blending derivations of Sec. 4.3 were not tested on the

physical apparatus, but only in the virtual wireframe environment. It remains to

be seen how various operators will respond to dynamic blending, particularly with

different bounds on the blending parameter and different action thresholds. Un-
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fortunately, there are few generally accepted metrics for evaluating performance in

shared control domains, and researchers almost exclusively use specific task perfor-

mance metrics (e.g., digging efficiency). Since operator receptiveness is a crucial

component in the success of shared control technologies, analyses will need to be

developed which quantify the interaction between the human and computer agent at

a more fundamental level over large trials. Through operator feedback and careful

experimentation, the effectiveness and responsiveness of blended shared control can

be improved even further in hydraulic excavation tasks, and potentially reach new

application domains.
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APPENDIX A

KINEMATIC AND ACTUATOR PARAMETERS OF THE REDUCED-SCALE

MODEL

Parameter Value Units Parameter Value Units
a1 3.7 cm r2,E 7 cm
a3 25.3 cm r3,D 33 cm
a2 48.2 cm r3,F 4 cm
a4 11.5 cm r3,G 4.7 cm
rB,C 5.7 cm r4,G 12.8 cm
rD,E 9.4 cm ∗rcyl,1 16.3 cm
rD,F 29 cm ∗rcyl,2 19.4 cm
rE,F 21.2 cm ∗rcyl,3 15.55 cm
rG,H 6 cm θ1,2,C 0.483 rad
rF,H 6 cm θ2,3,D 0.0870 rad
r1,A 7.8 cm θB,1,2 0.399 rad
r1,B 22 cm θD,2,3 2.78 rad
r1,C 27.5 cm θD,F,E 0.212 rad
r2,B 29.2 cm θG,3,4 1.659 rad
r2,C 26.7 cm lc4 76.42 cm
r2,D 8.1 cm lc2 24.1 cm
r2,F 21.3 cm lc3 9.62 cm

Table A.1: Kinematic parameters of the reduced-scale excavator model; ∗rcyl,1 de-
notes the length of the hydraulic cylinder (excluding the rod extension length), all
other parameters are consistent with Sec. 2.2.
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Parameter Value Units
Boom
ζ̇1,max 1.4 cm/s
ζ̈1,max 1.2 cm/s2
udb 1.3 PWM %

Stick
ζ̇2,max 2.7 cm/s
ζ̈2,max 1.2 cm/s2
udb 1.7 PWM %

Bucket
ζ̇3,max 2.4 cm/s
ζ̈3,max 3.2 cm/s2
udb 1.7 PWM %

Swing
ζ̇4,max 0.85 rad/s
ζ̈4,max 1.7 cm/s2
udb 0.6 PWM %

Table A.2: Measured actuator parameters; note that udb here is the deadband as a
percentage of PWM duty cycle, as in Fig. 5.2, and ζ̇i,max and ζ̈i,max are the maximum
velocity and acceleration, respectively, of the ith actuator.
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