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Predicting Longitudinal Dispersion Coefficient in Natural
Streams by Artificial Neural Network

Gokmen Tayfur' and Vijay P. Singh, F.ASCE?

Abstract: An artificial neural network (ANN) model was developed to predict the longitudinal dispersion coefficient in natural streams
and rivers. The hydraulic variables [flow discharge (Q), flow depth (H), flow velocity (U), shear velocity («*), and relative shear velocity
(U/u*)] and geometric characteristics [channel width (B), channel sinuosity (o), and channel shape parameter ()] constituted inputs to
the ANN model, whereas the dispersion coefficient (K,) was the target model output. The model was trained and tested using 71 data sets
of hydraulic and geometric parameters and dispersion coefficients measured on 29 streams and rivers in the United States. The training of
the ANN model was accomplished with an explained variance of 90% of the dispersion coefficient. The dispersion coefficient values
predicted by the ANN model satisfactorily compared with the measured values corresponding to different hydraulic and geometric
characteristics. The predicted values were also compared with those predicted using several equations that have been suggested in the
literature and it was found that the ANN model was superior in predicting the dispersion coefficient. The results of sensitivity analysis
indicated that the Q data alone would be sufficient for predicting more frequently occurring low values of the dispersion coefficient
(K,< 100 m?/s). For narrower channels (B/H < 50) using only U/u* data would be sufficient to predict the coefficient. If § and o were

used along with the flow variables, the prediction capability of the ANN model would be significantly improved.
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Introduction

Hazardous contaminants and effluent, when accidentally dis-
charged into a river, undergo stages of mixing as they are trans-
ported downstream by the flowing water. The effluent is dispersed
transversely, vertically, and longitudinally by advective and dis-
persive processes. Once the cross-sectional mixing is complete,
the process of longitudinal dispersion becomes the most impor-
tant mechanism (Seo and Cheong 1998). The intensity of longi-
tudinal dispersion is measured by the longitudinal dispersion co-
efficient (Deng et al. 2002). Hence, the transport process and the
consequent fate of pollutants are described, to a large extent, by
the longitudinal dispersion coefficient. For that reason, the disper-
sion coefficient has been extensively investigated (Elder 1959;
Sooky 1969; Fukuoko and Sayre 1973; McQuivey and Keefer
1976; Fischer et al. 1979; Sukhodolov et al. 1997; Deng et al.
2001; Seo and Baek 2004). Taylor (1953, 1954) first introduced
the longitudinal dispersion coefficient as a measure of the one-
dimensional dispersion for which Fischer (1967) developed the
following integral expression:
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where K,=longitudinal dispersion coefficient; A=cross-sectional
area; B=channel width; h=local flow depth; u'=deviation of
local depth mean flow velocity from cross-sectional mean;
y=coordinate in the lateral direction; and &,=local (depth aver-
aged) transverse mixing coefficient. The form of Eq. (1) is com-
monly reported in the literature in the above-mentioned form (Ru-
therford 1994; Seo and Cheong 1998; Deng et al. 2001;
Kashefipour and Falconer 2002; Jirka 2004). The form of Eq. (1)
given in Fischer et al. (1979) is slightly different, but it should not
be difficult to see the similarities between the two forms.

Owing to the requirement for detailed transverse profiles of
velocity and cross-sectional geometry, it is rather difficult to use
Eq. (1). As a result, a number of investigators have proposed
empirical equations based on experimental and field data for pre-
dicting the dispersion coefficient (McQuivey and Keefer 1974;
Fischer 1975; Liu 1977; Magazine et al. 1988; Iwasa and Aya
1991; Seo and Cheong 1998; Kashefipour and Falconer 2002).
Fischer (1975) developed the following simple method to predict
the longitudinal dispersion coefficient, which is a simplified non-
integral form of Eq. (1):

U*B?

U

K,=0.011 (2)
where H=cross-sectional average flow depth; u* =shear velocity,
and U=cross-sectional average flow velocity. Eq. (2) has the ad-
vantage of simplicity in that it can predict the dispersion coeffi-
cient by using only the data of cross-sectional mean parameters.

Employing 59 hydraulic and geometric data sets measured in
26 rivers in the United States, Seo and Cheong (1998) used di-
mensional analysis and applied the one-step Huber method, which
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is a nonlinear multiregression method, to derive the following
equation to predict the dispersion coefficient in natural streams:

0.62 1.428
K,= 5.915(Hu*)(§) (g) (3)

U

Using readily available hydraulic variables of B/H and U/u-, the
dimensionless dispersion coefficient K,./Hu. can be estimated
from Eq. (3). Seo and Cheong (1998) used 35 of the 59 measured
data sets for establishing Eq. (3) and the remaining 24 for verify-
ing their model. They compared their model with those of previ-
ously developed models of Elder (1959), McQuivey and Keefer
(1974), Liu (1977), Magazine et al. (1988), and Iwasa and Aya
(1991) and concluded that their model more accurately predicted
the dispersion coefficient in natural streams.

Deng et al. (2001) developed a more theoretically based ap-
proximation of Eq. (1). They first developed mathematical expres-
sions for the lateral distribution of river flow depth (h), the devia-
tion of the velocity from the mean flow velocity (u’), and the
local transverse mixing coefficient (g,). Then, they substituted the
developed expressions for /2, u’, and g, in Eq. (1). Finally, by also
considering the effects of nonuniformities to a limited extent, they
developed the following equation for predicting the dispersion
coefficient in straight channels:

Hu.\[B\*(U\?
K,=0.15 — —) (4)
(88;0)(1‘1) (I/l»

—0145+(—1 )<5>138<£) (5)
fo =" 3.5200/\H) \u.

The model of Deng et al. (2001) expressed by Eq. (4) not only
includes the conventional parameters of (B/H) and (U/u*) but
also the effects of the transverse mixing €. In their development,
however, they made several assumptions. In principle, their
model is limited to straight and uniform rivers. That is the reason
that they attributed the differences between the measured and pre-
dicted values to the effects of dead zones, bends, secondary cur-
rents, and other irregular features that are not explicitly involved
in Eq. (4). Further, their model is for the rivers where the width-
to-depth ratio is greater than 10.

Using 81 sets of measured data from 30 rivers in the United
States, Kashefipour and Falconer (2002) developed an equation
for predicting the longitudinal dispersion coefficient in riverine
flows. This equation relates the dispersion coefficient to the hy-
draulic and geometric parameters and was derived by using di-
mensional and regression analyses, and can be expressed as

where

K.= 10.612(HU)(ME> (6)
Most of the studies reported so far have been carried out based
on specific assumptions and channel conditions and therefore the
performance of the equations varies widely for the same stream
and flow conditions. Therefore, a model that would have general
applicability is needed. To that end, a three layer feedforward
artificial neural network (ANN) model was developed and is pro-
posed as an alternative to the existing theoretical and empirical
models to predict the dispersion coefficient in natural streams.
The proposed ANN model has an ability to capture the relation
between the hydraulic and geometric (input) parameters and the
dispersion coefficient (output) of the system without making any
assumptions with regard to stream geometry or flow dynamics.

V7 node W,y

input hidden output
nodes nodes nodes

Fig. 1. Schematic representation of a three-layer feedforward
artificial neural network

Artificial Neural Networks

ANNSs have an ability to capture relationships from given patterns
and this ability has enabled ANNs to be employed in the solution
of large-scale complex problems, such as pattern recognition,
nonlinear modeling, classification, association, and control
(ASCE Task Committee 2000). That is the reason that ANNs
have, for over a decade, been employed in the solution of many
hydraulic and hydrologic problems, such as rainfall-runoff mod-
eling (Halff et al. 1993; Smith and Eli 1995; Tokar and Johnson
1999), streamflow forcasting (Markus et al. 1995; Chua and Holz
2005), sediment transport (Tayfur 2002; Sen et al. 2004), seepage
(Tayfur et al. 2005), and groundwater flow (Aziz and Wong 1992;
Morshed and Kaluarachchi 1998). The usefulness of ANNs has
also been illustrated in predicting water quality parameters (Maier
and Dandy 1996).

The common three layer-feedforward type of an artificial neu-
ral network is generally applied in practice. Fig. 1 shows a typical
three-layer feedforward type ANN. In a feedforward network, the
input quantities are fed into input layer neurons which, in turn,
pass them on to the hidden layer neurons after multiplying by a
weight. A hidden layer neuron adds up the weighted input re-
ceived from each input neuron, associates it with a bias, and then
passes the result on through a nonlinear transfer function (Fig. 2).
The output neurons do the same operation as that of a hidden
neuron.

Before applying to any problem, the network is first trained,
whereby adjusting the weights and biases through some training
algorithm minimizes the difference between target output and the
calculated model output at each output neuron. Training of an
ANN consists of three elements: (1) weights between neurons that
define the relative importance of the inputs; (2) a transfer function
that controls the generation of the output from a neuron; and (3)
learning laws that describe how the adjustments of the weights
are made during training.

Fig. 2. Schematic of a node j
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During training, a neuron receives inputs from previous layers,
weighs each input with a prearranged value, and combines these
weighted inputs. The combination of the weighted inputs is rep-
resented as (Tayfur 2002)

netj=2x,-vl~j—bj (7)

where net;=summation of the weighted input for the jth neuron;
x;=input from the ith neuron to the jth neuron; v;;=weight from
the ith neuron in the previous layer to the jth neuron in the current
layer; and b;=the threshold value, also called the bias, associated
with node j. In Eq. (7), 2xuv;; should be greater than b; (i.e.,
2xv;;>b;) to produce a net information (net;) for the activation
function. Note that the use of bias is optional and may be applied
either to the input signal or to the output signal.

The net; is passed through a transfer function to determine the
level of activation. If the activation of a neuron is sufficiently
strong, it produces an output that is sent as an input to other
neurons in the successive layer. The sigmoid function is com-
monly employed as an activation function in the training of the
network. The sigmoid function, which enables a network to map
any nonlinear process and provides a graded nonlinear response,
is a bounded, monotonic, nondecreasing function. One of the
main reasons that the sigmoid function is employed is because of
the simplicity of its derivative that is required during the training
process (ASCE Task Committee 2000). The sigmoid function is
expressed as (Tayfur 2002)

1
flne) = (®)

The training of ANNS is widely accomplished by a backpropa-
gation algorithm. Backpropagation is the most commonly used
supervised training algorithm in the multilayered feedforward net-
works. In a backpropagation algorithm, information is processed
in the forward direction from the input layer to the hidden layer
and then to the output layer (Fig. 1). The objective of a back-
propagation algorithm is, by minimizing a predetermined error
function, to determine the optimal weights which would generate
an output vector Y=(y,,y,,... ,yl,) as close as possible to the tar-
get values of the output vector T=(t,,1,,...,t,) with a selected
accuracy. A form of the predetermined error function has the fol-
lowing form (ASCE Task Committee 2000)

E= E 2 i—1)° ©)

where y,=component of an ANN output vector Y; #;,=component
of a target output vector T; p=number of output neurons; and
P=number of training patterns.

In the backpropagation algorithm, the least square error
method along with a generalized delta rule is used to optimize the
network weights. The gradient descent method, along with the
chain rule of derivatives, is employed to modify network weights
as (Tayfur 2002)

vggw=v$d—BjTEi (10)
ij
where d=learning rate which is used to increase the chance of
avoiding the training process being trapped in a local minima
instead of a global minima (ASCE Task Committee 2000).

As pointed out previously, a network learns by adjusting the
biases and weights that link its neurons. However, before training
can begin, a network’s weights and biases must be set to small
random values. Also, due to the nature of the sigmoid function

used in the backpropagation algorithm, it is prudent to standardize
[i.e., convert to the range (0,1)] all external input and output
values before passing them into the neural network. Without stan-
dardization, large values input into the ANN would require ex-
tremely small weighting factors to be applied and this can cause a
number of problems (Dawson and Wilby 1998). There are no
fixed rules as to which standardization approach should be used in
a particular circumstance (Dawson and Wilby 1998). In this study,
the following standardization method was used (Tayfur 2002):

X;

’ (11)

+1

3=

'xmax

where z;=standardized value calculated for neuron i; x;=real

input or output value applied to neuron i; and x,, =maximum
input or output value of all values applied to neuron i.

More complete details of ANNs can be obtained from Somez

(1998), Dawson and Wilby (1998), ASCE Task Committee

(2000), amongst others.

Experimental Data

Training and testing of the model was accomplished by employ-
ing 71 sets of measured data from 29 rivers in the United States
(Table 1). The data sets were obtained from Deng et al. (2001).
Tables 2 and 3 summarize the statistical information on the 71
measured data sets. The range for the dispersion coefficient (K,)
varies from 1.9 to 892 m?/s (Table 3) and K, is greater than
100 m?/s in 21 cases (Table 1), which represents about 30% of
the total measured coefficient values (Table 2). The range for the
width-to-depth ratio (B/H) of the data sets varies from 13.8 to
156.5 (Table 3) and B/H is greater than 50 in 26 cases (Table 1),
which is about 37% of the total number of 71 data sets (Table 2).
The channel shape parameter (), defined by Deng et al. (2001) in
Eq. (12), varies from 2.62 to 5.05 (Table 3). According to Deng et
al. (2001), this range corresponds to a natural channel shape with
a flatbed region and two curving bank regions

B

B= ln< H) (12)
If 3=1.0 then the channel has a triangular shape. Otherwise, it
would have either a parabolic shape (=2) or a channel shape
with a flatbed region and two curving bank regions (2<B<5) or
a rectangular shape (8>5) (Deng et al. 2001). The sinuosity (o)
of the streams and rivers varies from 1.08 to 2.54 (Table 3). The
data of channel sinuosity in Table 1 were obtained from Deng et
al. (2002). The channel sinuosity (o) is defined as the ratio of the
channel length to the valley length (Chang 1988, pp. 10-27 and
306-309). It can be calculated from 1:25,000 scale topographic
maps based on specific stream reaches of the dye tests (Deng et

al. 2002). For straight channels, the sinuosity is equal to unity.
Fifty one data sets of the 71 sets (72%) were used for training
of the ANN model and the remaining sets (28%) were employed
for testing the model. The data sets used for testing are marked by
an asterisk (*) in Table 1. In choosing the data sets for training
and testing, special attention was paid to have representative sets
so as to avoid bias in model prediction. Tables 2 and 3 summarize
statistical information for the training and testing data sets. Tables
2 and 3 show that the range and mean values of the variables are
comparable for both data sets. Further, the percents of B/H>50
and K,>100 m?/s are also comparable for both sets (Table 2). In
25% of the test data sets, the measured value of the coefficient is
greater than 100 m?/s (this ratio is 31% in the training set) (Table
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Table 1. Experimental Measurements of Longitudinal Dispersion Coefficient in Natural Streams

Stream B (m) H (m) U (m/s) u* (m/s) B/H Ulu* B o K, (m?/s)
Antietam Creek, Md. 12.8 0.30 0.42 0.057 42.7 7.37 3.75 1.40 17.5
Antietam Creek, Md. 24.1 0.98 0.59 0.098 24.6 6.02 3.20 2.25 101.5
Antietam Creek, Md.* 11.9 0.66 0.43 0.085 18.0 5.06 2.89 2.25 20.9
Antietam Creek, Md. 21.0 0.48 0.62 0.069 43.8 8.99 3.78 1.26 25.9
Monocacy River, Md.* 48.7 0.55 0.26 0.052 88.5 5.00 4.48 1.28 37.8
Monocacy River, Md.* 93.0 0.71 0.16 0.046 131.0 3.48 4.88 1.28 414
Monocacy River, Md. 51.2 0.65 0.62 0.044 78.8 14.09 4.37 1.28 29.6
Monocacy River, Md. 97.5 1.15 0.32 0.058 84.8 5.52 4.44 1.61 119.8
Monocacy River, Md. 40.5 0.41 0.23 0.040 98.8 5.75 4.59 1.61 66.5
Conococheague Creek, Md. 42.2 0.69 0.23 0.064 61.2 3.59 4.11 2.25 40.8
Conococheague Creek, Md. 49.7 0.41 0.15 0.081 121.2 1.85 4.80 2.25 29.3
Conococheague Creek, Md.* 43.0 1.13 0.63 0.081 38.1 7.78 3.64 1.31 533
Chattahoochee River, Ga.* 75.6 1.95 0.74 0.138 38.8 5.36 3.66 1.27 88.9
Chattahoochee River, Ga. 91.9 2.44 0.52 0.094 371 5.53 3.63 1.57 166.9
Salt Creek, Neb. 32.0 0.50 0.24 0.038 64.0 6.32 4.16 1.38 522
Diffcult Run, Va. 14.5 0.31 0.25 0.062 46.8 4.03 3.85 1.09 1.9
Bear Creek*, Colo. 13.7 0.85 1.29 0.553 16.1 2.33 2.78 1.08 2.9
Little Pincy Creek, Md. 159 0.22 0.39 0.053 72.3 7.36 4.28 1.13 7.1
Bayou Anacoco, La. 17.5 0.45 0.32 0.024 38.9 13.33 3.66 1.41 5.8
Bayou Anacoco, La. 259 0.94 0.34 0.067 27.6 5.07 3.32 1.41 325
Bayou Anacoco, La. 36.6 0.91 0.40 0.067 40.2 5.97 3.69 1.41 39.5
Comite River, La. 15.7 0.23 0.36 0.039 68.3 9.23 422 1.31 69.0
Bayou Bartholomew, La. 334 1.40 0.20 0.031 239 6.45 3.17 2.46 54.7
Tickfau River, La. 15.0 0.59 0.27 0.080 25.4 3.38 3.23 1.75 10.3
Tangipahoa River, La. 314 0.81 0.48 0.072 38.8 6.67 3.66 1.46 45.1
Tangipahoa River, La.* 29.9 0.40 0.34 0.020 74.8 17.0 431 1.46 44.0
Red River, La. 253.6 1.62 0.61 0.032 156.5 19.06 5.05 1.20 143.8
Red River, La. 161.5 3.96 0.29 0.060 40.8 4.83 3.93 1.44 130.5
Red River, La. 1524 3.66 0.45 0.057 41.6 7.89 3.73 1.44 227.6
Red River, La. 155.1 1.74 0.47 0.036 89.1 13.06 4.49 1.24 177.7
Sabina River, La. 116.4 1.65 0.58 0.054 70.5 10.74 4.26 1.19 131.3
Sabina River, La.* 160.3 2.32 1.06 0.054 69.1 19.63 4.24 1.17 308.9
Sabina River*, Tex. 14.2 0.50 0.13 0.037 28.4 3.51 3.35 2.53 12.8
Sabina River*, Tex. 12.2 0.51 0.23 0.030 23.9 7.67 3.17 2.05 14.7
Sabina River*, Tex. 21.3 0.93 0.36 0.035 229 10.29 3.13 1.47 242
Mississippi River, La.* 711.2 19.94 0.56 0.041 35.7 13.66 3.58 1.44 237.2
Mississippi River, Mo.* 5334 494 1.05 0.069 108.0 15.22 4.68 1.38 457.7
Mississippi River, Mo.* 537.4 8.90 1.51 0.097 60.4 15.57 4.10 1.38 374.1
Wind/Big. River, Wyo. 442 1.37 0.99 0.142 32.3 6.97 3.48 1.56 184.6
Wind/Big. River, Wyo. 85.3 2.38 1.74 0.153 35.8 11.37 3.58 1.56 464.6
Wind/Big. River, Wyo.* 59.4 1.10 0.88 0.119 54.0 7.39 3.99 1.18 41.8
Wind/Big. River, Wyo. 68.6 2.16 1.55 0.168 31.8 9.23 3.46 1.18 162.6
Copper Creep, Va. 16.7 0.49 0.20 0.080 34.1 2.50 3.53 2.54 16.8
Clinch River, Va. 48.5 1.16 0.21 0.069 41.8 3.04 3.73 1.25 14.8
Clinch River, Va.* 28.7 0.61 0.35 0.069 47.0 5.07 3.85 1.14 10.7
Clinch River, Va. 579 2.45 0.75 0.104 23.6 7.21 3.16 1.14 40.5
Clinch River, Va.* 53.2 2.41 0.66 0.107 22.1 6.17 3.10 1.14 36.9
Copper Creek, Va. 18.3 0.38 0.15 0.116 48.2 1.29 3.88 2.54 20.7
Copper Creek, Va. 16.8 0.47 0.24 0.080 35.7 3.00 3.58 2.54 24.6
Powell River, Tenn.* 36.8 0.87 0.13 0.054 423 241 3.74 2.20 15.5
Copper River, Va. 19.6 0.84 0.49 0.101 23.3 4.85 3.15 1.26 20.8
Nooksack River, Wash. 64.0 0.76 0.67 0.268 84.2 2.50 4.43 1.30 34.8
John Day River, Ore.* 25.0 0.58 1.01 0.140 43.1 7.21 3.76 1.08 139
John Day River, Ore.* 34.1 2.47 0.82 0.180 13.8 4.56 2.62 1.89 65.0
Yadkin River, N.C. 70.1 2.35 0.43 0.101 29.8 4.26 3.39 2.17 111.5
Yadkin River, N.C. 71.6 3.84 0.76 0.128 18.6 5.94 2.92 2.17 260.1
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Table 1. (Continued.)

Stream B (m) H (m) U (m/s) u* (m/s) B/H Ulu* B o K, (m?/s)
Minnesota River 80.0 2.74 0.034 0.0024 29.2 14.17 3.37 — 22.3
Minnesota River 80.0 2.74 0.14 0.0097 29.2 14.43 3.37 — 34.9
Amita River 37.0 0.81 0.29 0.07 45.7 4.14 3.82 — 23.2
Amita River 42.0 0.80 0.42 0.069 52.5 6.09 3.96 — 30.2
White River* 67.0 0.59 0.35 0.044 113.6 7.95 4.73 — 30.2
Nooksack River 86.0 2.93 1.20 0.53 29.4 2.26 3.38 1.30 153.0
Susquehanna River 203.0 1.35 0.39 0.065 150.4 6.00 5.01 1.13 92.9
Bayou Anacoco 20.0 0.42 0.29 0.045 47.6 6.44 3.86 1.41 13.9
Muddy River 13.0 0.81 0.37 0.081 16.0 4.57 2.77 — 13.9
Muddy River 20.0 1.20 0.45 0.099 16.7 4.55 2.82 — 325
Comite River 13.0 0.26 0.31 0.044 50.0 7.05 3.91 1.31 7.0
Comite River 16.0 0.43 0.37 0.056 37.2 6.61 3.62 1.31 13.9
Missouri River 183.0 2.33 0.89 0.066 78.5 13.48 4.36 1.35 465.0
Missouri River 201.0 3.56 1.28 0.084 56.5 15.24 4.03 1.35 837.0
Missouri River* 197.0 3.11 1.53 0.078 63.3 19.62 4.15 1.35 892.0

Note: B=width; H=depth; U=velocity; u* =shear velocity; U/u*=relative shear velocity; 3 =shape parameter; o =sinuosity; K,=dispersion coefficient;

and *=data sets used for testing of the ANN model.

2). In 40% of the test data sets, the width-to-depth ratio is greater
than 50 (this ratio is 35% in the training set) (Table 2).

Model Application

In this study, a three-layer feedforward artificial neural network
model was constructed which had four neurons in the input layer,
six neurons in the hidden layer, and one neuron in the output
layer. The model was first trained and then verified.

Training of the Artificial Neural Networks Model

For the number of neurons in the hidden layer, a trial-and-error
procedure was used. The sigmoid function, defined by Eq. (8),
was employed as an activation function in the training of the
network and the backpropagation algorithm accomplished the
training of the ANN model. Before starting the training process,
random values of 0.2-0.4, and —1.0 were assigned for the network
weights and biases, respectively. These assigned values are con-
sistent with those used by Somez (1998). Also, before training
and testing, all external input and output data were standardized
using Eq. (11).

During training, 51 sets of channel width, depth, velocity, and
shear velocity were input variables and the dispersion coefficient
was the target output. The training of the network was accom-
plished with a 0.04 learning rate and after 20,000 iterations. Fig.
3 shows the measured dispersion data and the corresponding
ANN model output data at the end of training stage. For a better
illustration, predictions of three extreme values are not shown in
Fig. 3. The model successfully predicted three extreme values of

837.0, 464.6, and 465.0 as 739.7, 467.9, and 313.2, respectively.
Also in Fig. 3, the solid line is drawn with 45° to clearly show
over- and underestimation. Although the data seem to be evenly
distributed around the line, the number of overestimated values is
slightly more than the number of underestimated values.

The coefficient of determination (R”) between 51 measured
and predicted values of the longitudinal diffusion coefficient data
was 0.90 at the end of the training stage, implying that the ANN
model was satisfactorily trained.

Model Testing

The trained ANN model was then applied to predict the longitu-
dinal dispersion coefficient for 20 measured data sets and its per-
formance was compared with that of existing theoretical and em-
pirical equations. Table 4 summarizes measured and predicted
dispersion coefficient data. The predictions were made by the
ANN model, the theoretical model of Deng et al. (2001) [Eq. (4)],
and the empirical models of Fischer (1975) [Eq. (2)], Seo and
Cheong (1998) [Eq. (3)], and Kashefipour and Falconer (2002)
[Eq. (6)]. For the sake of brevity, the models of Deng et al.
(2001), Fischer (1975), Seo and Cheong (1998), and Kashefipour
and Falconer (2002) were designated as D-S-B, Fischer, S-C, and
K-F models, respectively. As seen in Table 4, of the 20 data sets,
9 measured dispersion coefficients were closer to those predicted
by the ANN model, as opposed to 4 by the D-S-B model, 2 by the
Fischer model, 4 by the S-C model, and 5 by the K-F model. In
other words, the ANN model gave better predictions for 38% of
the measured data, as opposed to 18% by the D-S-B model, 8%
by the Fischer model, 18% by the S-C model, and 21% by the
K-F model.

Table 2. Statistical Information on the Whole, Training, and Testing Measured Data Sets

Set U (m/s) its (m/s) (B/H) B G K, (m?/s) % B/H>50 % K,>100
Whole 0.541 0.088 51.71 3.95 1.50 106.5 37 30
Training 0.501 0.082 50.30 3.92 1.54 96.4 35 31
Testing 0.644 0.103 55.30 4.01 1.40 1322 40 25

Note: U=mean velocity; #=mean shear velocity; B/ H=mean width/depth ratio; @ =mean shape parameter; G=mean sinuosity; and K, =mean dispersion

coefficient.
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Table 3. Range Values for the Whole, Training, and Testing Sets

Set Umin_ Umax (m/s) u*min_u*max (m/S) (B/H)min_(B/H)max Bmin_Bmax O min~ O max mein_meax (mZ/S)
Whole 0.034-1.74 0.0024-0.553 13.8-156.5 2.62-5.05 1.08-2.54 1.9-892
Training 0.034-1.74 0.0024-0.268 16.0-156.5 2.77-5.05 1.09-2.54 1.9-837
Testing 0.130-1.53 0.0200-0.553 13.8-131.0 2.62-4.88 1.08-2.53 2.9-892
However, in order to perform the sensitivity analysis of the N

performance of the models, the values of the discrepancy ratio 2 (K., - pr_)z
(DR) for each model was also computed. DR is commonly used i ! '

RMSE = . (14)

as an error measure in the literature and was defined by Kashefi-
pour and Falconer (2002) as

DR = log&ﬂ (13)
where K, ,=predicted dispersion coefficient, and K,,,=measured
dispersion coefficient. It follows from Eq. (13) that if DR=0.0,
then there is an exact prediction (K,,=K,,). Otherwise, there is
either an overprediction (DR>0.0; and K,,>K,,,) or underpre-
diction (DR<C0.0; and K, <K,,,).

The discrepancy ratios of each model for the data in Table 4
are shown in Fig. 4. Although there is a slight skewness of the
results for the ANN model toward the positive zone, the distribu-
tion of error between —0.3 and 1.0 is symmetric. The DR values
for the ANN model range from -0.22 to 1.13 (Fig. 4). These
results imply that the ANN model slightly overestimated the mea-
sured data. However, according to Fig. 4, compared to the ANN
model, all the other models, especially the Fischer model, either
significantly underpredicted or overpredicted the measured data.
The accuracy of each model is seen from Table 5. The accuracy of
each model may be categorized by the number of DR values
between —0.3 and 0.3 relative to the total number of data values
(Seo and Cheong 1998; Kashefipour and Falconer 2002). As seen
from Table 5, for this particular set of calibration and verification
data, the accuracy of the ANN model is 70%, which is the highest
of the models used. The D-S-B and K-F models follow the ANN
model with 55% accuracy and the S-C model has an accuracy of
50% and the Fischer model has the lowest accuracy of 25%.

The root mean square error (RMSE), defined as (Dolling and
Varas 2002)

300

250

b2
(=3
=3

Predicted Kx (mz/s) Data
g 3

50 1

0 50 100 150 200 250 300
Measured K. (mz/s) Data

Fig. 3. Artificial neural network predicted dispersion coefficient data
versus measured data at the end of the training stage

N

was computed for each model given in Table 5. In Eq. (14),
N=number of observations, which is 20 for Table 4. In Table 5,
three different RMSE values are presented for each model. The
first one (column 3) is for the case where all the 20 measured data
are included in the computation of the RMSE values; the second
one (column 4) is for the case where the extreme measured dis-

Table 4. Comparison of Measured and Predicted Longitudinal
Dispersion Coefficient (K,)

Artificial neural networks Model
Measured
River K, (m?/s) ANNs D-S-B  Fischer S-C K-F
Antietam Creek, 209 268 15.0 5.1 20.2%  15.2

Md.
Monocacy River, 37.8 27.1%  28.2% 61.7 27.1% 7.6
Md.
Monocacy River, 414  31.4*% 258 75.6 23.5 4.2
Md.

Conococheague 533 43.0 93.1 88.2 96.7 58.8%
Creek, Md.

Chattahoochee 889 77.6 168.6 127.9  169.1 82.1*
River, Ga.

Bear Creek, Colo. 29 392 28.1 7.3% 523 27.1

Tangipahoa River, 44.0 265 28.7 143.0 39.2% 245
La.

Sabina River, La.  308.9 346.6* 508.3 25250 718.8 512.3
Sabina River, Tex. 12.8  21.9*% 4.6 2.0 52 2.4
Mississippi River, 237.2 838.0*1,618.0 2,133.0 1,855.0 1,619.0
La.

Mississippi River, 457.7 838.0%1,245.0 1,0108.0 1,793.0  838.0*
Mo.

Mississippi River, 374.1 838.0%2,579.0 8,378.0 3,271.0 2,220.0
Mo.

Wind/Bigh. River, 41.8  59.7* 156.6 226.5 160.0 75.9
Wyo.

Clinch River, Va. 10.7  26.9 28.4 25.1 27.5 11.5%
Clinch River, Va. 369 766 1183 52.2% 139.7 104.1
Powell River, 155 253 9.9% 54 9.9% 2.9
Tenn.

John Day River, 139 452 81.6 95.5 83.2 41.0*
Ore.

John Day River, 650 772 71.2% 19.2 116.8 97.9
Ore.

White River 30.2  31.7¢ 464 229.0 54.3 17.7

Missouri River 892.0 763.4 950.8* 4,120.0 1,317.0 990.5
Note: D-S-B=Deng et al. (2001); Fischer=Fischer (1975); S-C=Seo and
Cheong (1998); K-F=Kashefipour and Falconer (2002); and *=close
estimates of the measured data.
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Fig. 4. Comparison of discrepancy ratio (DR) values for each model

persion coefficients (K,>100 m?/s) are not considered in the
RMSE computation; and finally, the third one (column 5) is for
the case where when the width-to-depth ratios are greater than 50
(B/H>50) are not included in the RMSE computation. As seen
from Table 5, the ANN model has the lowest RMSE values in
each case. This implies that the ANN model predicted the values
of the dispersion coefficient in natural channels of different ge-
ometries better than did all other models. Although the D-S-B,
S-C, and K-F models performed similarly, the Fischer model had
the largest error in each case (Table 5). When the extreme values
of the dispersion coefficient (K, > 100) were not considered in the
error computation, the RMSE values decreased 10, 13, 15, 20,
and 34 times for the ANN, D-S-B, S-C, K-F, and Fischer models,
respectively. This implies that all the models, especially the K-F
and Fischer models, significantly overpredicted the extreme val-
ues of the coefficient (see Table 4). When B/H > 50 data were not
considered in the computation of the RMSE values, the decrease
in the RMSE value was insignificant for the ANN model. This
means that the ANN model can satisfactorily predict the values of
the coefficient in wide and as well as in narrow channels. How-
ever, there was about a 1.5 times decrease in the RMSE values for
the D-S-B, S-C, and K-F models and 5 times decrease for the
Fischer model. This indicates that these models, especially the
Fischer model, perform poorly in predicting the values of the
coefficient in wide channels.

It follows from the previous comparison that the ANN model
is capable of providing a superior prediction of the longitudinal
dispersion coefficient in natural streams.

Table 5. Comparison of Dispersion Coefficient Models

RMSE RMSE
(m?/s) (m?/s)
(K,> 100 m2/s (B/H>50

Accuracy RMSE

Model (%) (m?/s) not included) not included)
ANN 70 193.0 19.3 183.0
D-S-B 55 610.0 46.7 416.0
Fischer 25 2,968.0 88.4 570.0
S-C 50 812.0 54.9 491.0
K-F 55 525.0 27.3 416.0

Note: RMSE=root mean square error; ANN=artificial neural network;
D-S-B=Deng et al. (2001); Fischer=Fischer (1975); S-C=Seo and
Cheong (1998); and K-F=Kashefipour and Falconer (2002).

Sensitivity Analysis

The sensitivity analysis of the ANN model was undertaken by
predicting the measured longitudinal dispersion coefficient for the
following seven cases. Table 6 summarizes the input variables
and number of neurons in each input and hidden layers of the
network for each case model. The number of neurons in each
hidden layer was obtained by the trial and error procedure. Each
case model was successfully trained with 20,000 iterations and
0.04 learning rate.

Case 1 considered channel width (B), flow depth (H), and flow
velocity (U) as inputs to the network and the dispersion coeffi-
cient (K,) as the target output. Note that shear velocity (u*) was
not considered. The objective was to investigate the consequences
of not utilizing the shear velocity as an input variable in the
prediction of the dispersion coefficient.

Case 2 considered only flow discharge (Q) as an input vari-
able. In Case 1, there were three input variables, namely, the flow
depth, flow velocity, and channel width. These variables in Case 1
were explicitly involved in the prediction of the dispersion coef-
ficient. On the other hand, in Case 2, there was only one input
variable, namely the flow discharge that is the product of flow
depth, velocity, and channel width. Hence, in Case 2, the vari-
ables of flow depth, velocity, and channel width were implicitly
involved in the prediction of the dispersion coefficient. The ob-
jective in Case 2 was to find out whether it would be sufficient to
utilize only the discharge data to predict the dispersion
coefficient.

Case 3 considered only flow velocity (U) as the input variable.
According to Jobson (2001), velocity plays an important role in

Table 6. Input Variables, Number of Neurons in Each Input and Hidden Layers, RMSE, and Accuracy Values for Each Case Model

RMSE (m?/s) RMSE (m?/s)

Artificial neural Neurons Neurons RMSE (K,>100 m?/s (B/H>50 Accuracy
networks model Input variables input layer hidden layer (m?/s) not included) not included) (%)
Case 1 U,H,B 3 5 193.0 21.2 183.0 75
Case 2 Q 1 3 191.0 20.0 179.0 65
Case 3 U 1 3 170.0 146.0 164.0 40
Case 4 U,B 2 4 137.0 105.0 118.0 70
Case 5 U,B,o 3 5 119.0 77.7 99.0 58
Case 6 Ulu* 1 1 159.0 104.3 42.0 50
Case 7 Ulu*,B,c 3 2 142.0 93.8 67.0 58

Note: (U=flow velocity; H=flow depth; Q=flow discharge; u*=shear velocity; U/u*=relative shear velocity; B=channel width; B=channel shape

parameter; and o =channel sinuosity.)
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the prediction of the effects of a pollutant spill. The objective here
was to find out whether it would be sufficient to utilize only the
velocity data in predicting the dispersion coefficient.

Case 4 considered flow velocity and channel shape parameter
(B) as input variables. In this case, the objective was to find out
whether the inclusion of the shape parameter along with velocity
would improve the prediction.

Case 5 considered channel sinuosity (o) in the input vector
along with the channel shape parameter and flow velocity. The
objective was to find out whether the inclusion of sinuosity would
improve the predictions in Case 4.

Case 6 considered the relative shear velocity (U/u*) as the
only input variable. In Egs. (2)—(4) and (6), the dispersion coef-
ficient (K,) is expressed as a function of U/u*. Fig. 5(a) shows
the relation of the K, predicted by Egs. (2)—(4) and (6) to the
measured U/u*. For clarity, the predicted extreme K, values
(greater than 800 m?/s) by the equations corresponding to 10
different measured U/u* were not shown in Fig. 5(a). For these
10 different cases, the predictions by the equations varied from
800.0 to 10,000.0 m?/s. Fig. 5(a) shows the remaining 61 differ-
ent cases for which the equations yielded a wide range of varia-
tion in the prediction of K,. Fig. 5(b), on the other hand, shows
the measured U/u* versus measured K,. The linear relationship
between the measured K, and the measured U/u* is low with
R?=0.34 [Fig. 5(b)]. This implies that the behavior of the disper-
sion process is more nonlinear than linear and, therefore, it is
more suited for a nonlinear model, such as ANN. The objective in
this case was to find out whether it would be sufficient to predict
K, from the U/u* data.

Case 7 considered the channel shaper parameter () and chan-
nel sinuosity (o) along with the relative shear velocity (U/u*) in
the input vector. The objective here was to find out whether the

Table 7. Comparison of Measured and Predicted Longitudinal Dispersion Coefficient (K,)

Measured Case

River K, (m?/s) 1 2 3 4 5 6 7
Antietam Creek, Md. 20.9 29.2 38.9 64.5 25.6* 42.3 55.0 100.2
Monocacy River, Md. 37.8 29.5 39.8* 28.5 61.3 47.5 54.4 329
Monocacy River, Md. 414 33.7 40.6%* 16.4 61.9 524 41.8% 20.6
Conocochea. Creek, Md. 53.3 41.7 45.9% 134.9 96.5 70.0 92.2 89.6
Chattahooch. River, Ga. 88.9 74.8°% 77.3% 182.3 132.0 98.7 58.2 47.3
Bear Creek, Colo. 29 59.3 41.7 384.2 458.8 175.6 35.0 27.6%*
Tangipahoa River, La. 44.0 28.2 39.1% 42.7% 68.6 64.4 264.0 366.8
Sabina River, La. 308.9 311.5* 478.0 315.3* 326.5* 309.9* 287.6 418.4
Sabina River, Tex. 12.8 25.0 384 13.8* 12.8* 33.1 42.0 68.2
Mississippi River, La. 237.2 838.0 826.0 107.2 74.1 58.6 313.2 291.0%*
Mississippi River, Mo. 457.7 838.0 826.0 311.7 371.0 410.6%* 240.1 287.0
Mississippi River, Mo. 374.1 838.0 826.0 428.0% 481.0 523.9 245.3 326.5%
Wind/Bigh. River, Wyo. 41.8 56.8% 54.5% 244.0 219.7 182.4 85.6 66.8
Clinch River, Va. 10.7 29.3% 39.6 44.8 47.6 25.2 55.1 38.3
Clinch River, Va. 36.9 69.5 65.3 147.4 68.7 33.0* 67.8 65.7
Powell River, Tenn. 15.5 28.1 39.1 13.8* 19.3* 36.2 354 374
John Day River, Ore. 13.9 44.6* 41.6* 297.0 248.0 192.8 82.8 65.4
John Day River, Ore. 65.0 74.7 58.7* 218.0 76.9 83.3 50.3 79.6
White River 30.2 33.1%* 41.2 44.8 104.0 — 95.2 —
Missouri River 892.0 771.3* 814.8% 431.1 490.0 533.2 287.5 429.3

Note: *=Close estimates of the measured data.
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inclusion of geometric parameters would improve the predictions
in Case 6. Note that in Case 7, through the shape parameter the
channel width and flow depth are implicitly involved in the input
vector. Also, by the relative shear velocity, flow velocity and
shear velocity are implicitly involved in the input vector. In a
way, the flow variables (flow depth, velocity, and shear velocity)
and geometric parameters (channel width and sinuosity) were all
involved in the input vector of ANN to predict the dispersion
coefficient.

The results of prediction of the measured dispersion coeffi-
cient data by the 7 case models are given in Table 7 and these
show that Case 1-7 models, in general, yielded good estimates of
measured data. The RMSE values and accuracy of each case
model are listed in Table 6. From Tables 6 and 7, it can be de-
duced that Case 1 and 2 models, in general, exhibited similar
performances and overpredicted the values of K, > 100 m?/s that
constituted 25% of the testing data (Table 2). This is expected,
because Case 1 model uses the flow velocity, depth and channel
width data as inputs whereas Case 2 model uses the product of
these variables, which is the flow discharge. In a way, both mod-
els use similar input information. The RMSE value in Case 2 is
191.0 m?/s when all the predicted data are considered in the error
computation. This value decreased to the lowest value of
20.0 m?/s when K,>100 m?/s data are not considered in the
error computation (Table 6). This implies that flow discharge data
can, in general, yield better predictions of the commonly encoun-
tered low values (K, <100 m?/s) of the coefficient.

If flow velocity is used as the only input variable (Case 3) then
the accuracy of prediction is the lowest=40% (Table 6). Using
channel shape parameter along with the flow velocity (Case 4)
improves the accuracy of Case 3 model from 40 to 70%. Using
geometric characteristics (channel shape parameter and sinuosity)
along with the flow velocity (Case 5) in the input vector yields
satisfactory predictions with the lowest RMSE of 119.2 (Table 6).

The RMSE value of 159.0 in Case 6 model decreased to the
lowest value of 42.3 when B/H > 50 data were not considered in
the error computation (Table 6). This implies that using relative
shear velocity (U/u*) as the only input variable (Case 6) in the
network yields better estimates of the dispersion coefficient in
narrower (B/H <50) channels that constitute 60% of the testing
data (Table 2). On the other hand, the 50% accuracy of Case 6
model increased to 58% due to the inclusion of channel shape
parameter and sinuosity along with the relative shear velocity
(Case 7) in the input vector (Table 6).

Summary and Conclusions

An artificial neural network model was developed for predicting
the longitudinal dispersion coefficient in natural streams from
flow variables and channel geometric characteristics. The satisfac-
tory predictions of the measured data from streams having differ-
ent geometric and flow characteristics revealed that the developed
ANN model was superior to the existing theoretical and empirical
equations.

When a one-dimensional dispersion model is applied to pre-
dict the concentration variation of pollutants in natural streams
after the Fickian period is reached, the selection of a proper dis-
persion coefficient is the most important and also the most diffi-
cult task (Seo and Cheong 1998). It is a relatively simple task to
use a measured dispersion coefficient, if it is known. However,
for streams where mixing and dispersion characteristics are un-
known, the dispersion coefficient can only be estimated using a

theoretical or empirical equation. Because most studies have been

carried out based on specific assumptions and channel conditions,

the performance of existing equations varies widely for the same
stream and flow condition [see Fig. 5(a)]. On the other hand, the

ANN model, developed in this study, makes no assumption with

regard to stream geometry or flow dynamics in the stream. It has

proved to capture the relation between the input and output pa-

rameters of the system, resulting in satisfactory prediction of a

wide range of values of the dispersion coefficient in natural

streams of varying geometric and flow conditions. The developed

ANN model overcomes the shortcomings of the existing models.

It can be concluded that the ANN model can be a strong alterna-

tive modeling tool to the existing theoretical and empirical mod-

els to predict the dispersion coefficient in natural streams.
The sensitivity analysis results led to the following
conclusions.

1. If the data on shear velocity, flow velocity, depth, and chan-
nel width are available, then the ANN model successfully
predicts the wide ranging values of the dispersion coefficient
of natural streams of different geometries. However, if one
has only the discharge data then one can use that data in the
ANN model to satisfactorily predict the more frequently en-
countered low values of the dispersion coefficient
(K, <100 m?/s).

2. If geometric characteristics of the channel shape parameter
and sinuosity are used along with the flow velocity in the
input vector, then the ANN model satisfactorily predicts the
dispersion coefficient.

3. If the relative shear velocity is used as the only input vari-
able, then the ANN model can yield satisfactory predictions
of the dispersion coefficient in more frequently encountered
narrower channels (B/H <50).

4. The geometric characteristics, when used along with the rela-
tive shear velocity, can significantly improve the perfor-
mance of the ANN model in predicting the longitudinal dis-
persion coefficient in natural streams.

Notation

The following symbols are used in this paper:
A = cross-sectional area;
B = channel width;

b; = the threshold value, also called the bias,
associated with node j;

H = cross-sectional average flow depth;

h = local flow depth;

K, = longitudinal dispersion coefficient;

K., = measured dispersion coefficient;
K,, = predicted dispersion coefficient;
N = number of observations
net; = summation of the weighted input for the jth
neuron;

P = number of training patterns;

p = number of output neurons;

t; = component of a target output vector T;
U = cross-sectional average flow velocity;
p

u" = shear velocity;

u' = deviation of local depth mean flow velocity from
cross-sectional mean;

v; = weight from the ith neuron in the previous layer
to the jth neuron in the current layer;

x; = input from the ith neuron to the jth neuron;
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Xmax = Mmaximum input value;
y = coordinate in the lateral direction;
y; = component of an ANN output vector Y;
z; = standardized value;
3 = shape parameter;
8 = learning rate; and
g, = local transverse mixing coefficient.
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