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Abstract: Numerical schemes and stability criteria are developed for solution of the one-dimensional fractional advection-d
equation~FRADE! derived by revising Fick’s first law. Employing 74 sets of dye test data measured on natural streams, it is fo
the fractional orderF of the partial differential operator acting on the dispersion term varies around the most frequently occurrin
of F51.65 in the range of 1.4 to 2.0. Two series expansions are proposed for approximation of the limit definitions of f
derivatives. On this ground, two three-term finite-difference schemes—‘‘1.3 Backward Scheme’’ having the first-order accuracyF.3
Central Scheme’’ possessing theF-th order accuracy—are presented for fractional order derivatives. TheF.3 scheme is found to perfor
better than does the 1.3 scheme in terms of error and stability analyses and is thus recommended for numerical solution of F
fractional dispersion model characterized by the FRADE and theF.3 scheme can accurately simulate the long-tailed dispersion pro
in natural rivers.
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Introduction

The advection-dispersion equation~ADE! is widely used to solv
a range of problems in physical, chemical, and biological
ences, involving dispersion or diffusion, such as mixing in inl
and coastal waters~Fischer et al. 1979!, transport of thermal en
ergy in a plasma, flow of a chemically reacting fluid from a
surface, and evolution of populations~Johnson et al. 1995!. The
fundamental form of the one dimensional~1D! ADE can be ex
pressed as

]C

]t
1U

]C

]x
5K

]2C

]x2 (1)

where C5passive scalar~e.g., temperature or concentration
contaminants or dyes!; U5mean advective fluid velocity or th
drift in the x direction; K5dispersion coefficient; andt5time.
Eq. ~1! is derived following Fick’s first law and in principle
holds after the initial mixing period or for the far field where
longitudinal shear flow dispersion becomes a dominant me
nism of pollutant mixing in rivers.

Analytical solutions of Eq.~1! have been extensively inves
gated under various initial and boundary conditions. These
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tions generally yield a Gaussian spatial distribution or a ske
temporal distribution~both distributions are also called the Fi
ian solution! for an instantaneous point source~passive! and con
stant velocity and dispersion coefficient~Rutherford 1994; Fis
cher et al. 1979!. One characteristic of the Gaussian spatial pr
solution is that its variance increases proportionally with time
its peak concentration decreases in a manner inversely p
tional to the square root of time.

It can be proved that the Fickian temporal peak concentr
decays inversely with the square root of distancex and the tem
poral variance increases proportionally withx asx becomes larg
~Hunt 1999!. However, observations of tracer clouds in riv
have revealed persistent deviations from the behavior pred
by the Fickian solution~Nordin and Troutman 1980!. Data col-
lected from nearly 100 streams and rivers show that the unit
concentration tends to attenuate in proportion to the travel
with the 0.89 power, not the 0.5 power~Jobson 2001!. Day ~Hunt
1999! found in 49 different runs that the measured temporal
concentrations decayed inversely withxn in which n varied in the
range of 0.75–1.59 and had a mean value of 1.17 and a sta
deviation of 0.21. Observed values for the variance were pr
tional to xm in which m ranged from 1.84 to 2.3 with a mean
2.06. Fig. 1 shows a typical example of the non-Gaussian te
ral distribution from the results of dye tests conducted on
Monocacy River~Nordin and Sabol 1974!.

A distinguishing characteristic of the distribution in Fig. 1
steep leading edge followed by a flat long tail stretching
stream, demonstrating a greater variance than that of the F
solution. On the other hand, to fit the Fickian solution to obse
data, Day~Hunt 1999! also found that the dispersion coeffici
should be increased indefinitely with distance downstream.
ther case the Fickian solution consistently shows a disagree
with laboratory and field data. These results demonstrate tha
centration profiles measured in natural media do not follow
predicted by the Fickian theory. This means that the ADE in
~1!, based on the classical Fickian law, is not capable of refle

the long tail dispersion process. A revision of the ADE in Eq.~1!

ion subject to ASCE license or copyright. Visit http://www.ascelibrary.org
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is necessary for a better simulation of non-Fickian dispersion
cesses. As a result, extensive efforts have been made to rev
Fickian theory and thus the classical ADE in Eq.~1!.

A promising approach for revision of the Fickian theory is
application of fractional derivatives, because they permit a
scription of continuous time random walks~CTRW! that result in
long tail distributions by assigning a joint space-time distribu
to individual particle motions~Metzler and Klafter 2000!, leading
to fractional advection-dispersion equation~FADE!. The main ad
vantage of the FADE is that it has solutions which resemble
highly skewed and heavy-tailed breakthrough curves observ
field and whose variance is greater than that of the Gau
distribution and may grow to be infinite. By modifying Fick’s la
and using the eigenvector equation and fractional Fokker-P
equation, Chaves~1998! proposed a symmetrical FADE for is
tropic media and an asymmetrical FADE with two different
fusivities for anisotropic media. Fundamental solutions of FA
are Lévy’s a-stable distribution. Based on CTRW, Meersch
et al. ~1999! extended the 1D FADE to a multidimensional fo
with a skewness parameter.

Except for some special initial and boundary conditions,
lytical solutions of FADE are difficult to find. In order to ma
the practical application of FADE available, Benson et al.~2000!
took two identical diffusivities in Chaves’ FADE or the skewn
parameters of Meerschaert’s FADE and used the Fourier t
form technique to obtain an analytical solution with two sy
metrical tails. The FADE approach appears to have the pote
for the prediction of non-Fickian dispersion processes, bu
wide application is hindered by the difficulty in obtaining anal
cal solutions, especially when reaction terms are incorpor
Another problem is that shear flow dispersion is not explic
included in FADEs. All the existing FADEs are derived from
CTRW of molecular particles and thus they are actually just
tional advection-diffusion equations instead of the real fracti
advection-dispersion equations. This means that the ex
FADEs are only applicable to the diffusion process dominate
molecular random walks. However, the shear velocity-caused
persion plays a far more important role in actual dispersion
cesses in turbulent shear flows than does the molecular diff
~Fischer et al. 1979!. In fact, molecular diffusion is negligible
compared to the shear flow dispersion.

Another alternative of the Fickian ADE is the dead-zone m
els. The very long tails are often attributed to the trapping e
of particles in dead zones~Nordin and Troutman 1980!. The dead
zone models simulate the heavy tail distribution by artifici
adding a reaction~storage-release! term in Eq.~1! and adjusting
the reaction parameters to match the observed dispersion
butions~Seo and Cheong 2001!. Usually, the dead zone models

Fig. 1. Non-Gaussian dispersion of tracer in Monocacy Rive
the observed data more closely than does Eq.~1!, but they are

J
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characterized by a decay in the skewness, which is not disp
by the observed distributions~Nordin and Troutman 1980!. Fur-
thermore, the adjusted parameters of the dead zone models
to be physically unreasonable~Czernuszenko et al. 1998!. Hunt
~1999! found that the temporal variance and peak concentr
decay rate of the dead-zone model have behaviors that are s
to the corresponding results for the Fickian model. In short
dead zone models are still troublesome in both the goodness
and the physical relevance of their parameters. It shoul
pointed out that some discrepancies between predictions o
1D models and observations are unavoidable, since the 1D
els numerically approximate the real-world phenomena by a
dimensional numerical algorithm. The fundamental causes o
dispersion processes in natural rivers are velocity shearing
profile and the storage-release effect of dead-zones.

From the above discussion it can be seen that a sound d
sion model should possess the following characteristics:~1! The
variance of the predicted concentration profiles should be m
higher than that of the Fickian profiles and thus a fracti
advection-dispersion equation should be the best option.~2! The
storage-release~reaction! effect is induced by the dispersion p
cess and thus it should be related to the dispersion coefficiK
and be either included in the new dispersion term~note: this term
in a sound model should be different from the dispersion ter
the classical ADE! or produced automatically by the new disp
sion term. It is not necessary to artificially add a storage-re
~reaction! term in a sound advection-dispersion equation.~3! The
new dispersion term can be divided into two parts: The first
should represent the dispersion process in the bulk flow an
second part should be able to reflect the long-range depen
feature of the dispersion process in natural media or the h
chical release process caused by the dead-zones. The fe
actually can be employed as qualitative criteria for judg
whether a dispersion model is reasonable or not.

The overall goal of this paper is to develop a physically b
fractional-order advection-dispersion equation and an effi
numerical scheme for the solution of the equation so tha
non-Fickian dispersion processes involved in various field
cluding natural rivers can be accurately predicted. To that en
specific objectives are therefore~1! to derive a process-orient
and physically based fractional advection-dispersion equ
~FRADE!; ~2! to develop numerical schemes for FRADE;~3! to
determine stability requirements of numerical schemes for d
ent cases; and~4! to demonstrate the application of the FRA
and the new numerical scheme and to test the efficacy o
model.

Fractional Advection-Dispersion Equation

It is essential to understand the mechanisms of dispersio
development of a reasonable ADE, as the ADE is the result o
continuity equation coupled with some kind of a dispersion
law, such as Fick’s law. In general, if there is no significant s
age effect of dead zones, a real dispersion process is the c
nation of three different processes~Fischer et al. 1979!: ~1! The
molecular diffusion or the Fickian diffusion;~2! the turbulent dif
fusion; and~3! the shear flow dispersion. Of these mechani
the molecular diffusion always exists in the transport process
scalars no matter whether the fluid is in a static state or
flowing state and is laminar flow or turbulent flow. The turbu
diffusion is usually anisotropic and highly dependent on the

volved length and velocity scales. The shear flow dispersion is
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induced by the velocity gradients due to the viscosity of the
and the resistance of the fluid boundary, and thus it may occ
both laminar and turbulent flow. As compared to the disper
the diffusion contribution in the longitudinal direction is neg
gible. Therefore, this paper mainly focuses on dispersion an
vection processes.

Fractional Advection-Dispersion Equation

For the convenience of revision of Fick’s first law, Eq.~1! is
recast into the following form:

]C

]t
1U

]C

]x
5

]~2J!

]x
and J52KF

]F21C

]xF21 (2)

in which F52 in terms of Fick’s first law;J5dispersion flux; an
KF5dispersion coefficient, generally regarded as a consta
should be noted that the classical Fick’s first law withF52 is
valid only for isotropic media. Unfortunately, natural media
rarely isotropic and almost fully heterogeneous. For anisotr
mediaF should be a fraction, including the integer constant
as a special value. Physically, the fractional differential ordF
represents the heterogeneity of natural media. For instanc
natural rivers and streams there is a wide spectrum of dead-z
such as reverse flows induced by bends and pools, side po
zones between dikes, turbulent eddies, and wakes behind b
regularities and roughness elements~ripples, sand-dunes, cobbl
boulders, etc.!, and so on. The dead-zones are characterize
hierarchical structures that contain pollutant storage-release
with the size ranging from flow depth to millimeter or eve
smaller scale. Pollutants captured by large-scale dead-zon
easily and quickly released but the release processes of poll
trapped in the small-scale dead-zones may take a long time,
ing a hierarchical release of the pollutants and thus the long-
dispersion process. Such a hierarchical dead-zone induced s
dispersion process is difficult to describe by currently avail
models. However, fractional derivative-based differential e
tions are found to be particularly suited for describing the lo
tailed dispersion processes observed in systems with hierar
scaling structures~Zaslavsky 2002; Sokolov et al. 2002; Metz
and Klafter 2000!. Consequently, to reflect the influence of h
erogeneity of the medium and for generality or universality
differential orderF in this paper is allowed to be a fraction inste
of the integer constant of 2, leading to the following equatio

]C

]t
1U

]C

]x
5KF

]FC

]xF (3)

Eq. ~3! reduces to Eq.~1! when F52. Eq. ~3! is the FRADE
suggested for natural streams. Owing to the importance of pa
eter F in the dispersion processes and for the convenienc
reference, parameterF is termed as ‘‘Fractor’’ in this paper. Du
to the heterogeneous nature of natural media factorF varies sig
nificantly from one medium to another instead of keeping
integer constant 2.

Range of Variation of Fractor F

An understanding of fractorF is essential for development of
numerical method for FRADE and for application of the pa
differential equations that are derived directly using Fick’s law
in analogy with Fick’s law. As mentioned earlier, fractorF may be
physically understood as the anisotropic extent of the me
through which the dispersion process occurs. The smaller th

is the fractor, the more heterogeneous is the medium. For isotro-

424 / JOURNAL OF HYDRAULIC ENGINEERING © ASCE / MAY 2004

Downloaded 08 Sep 2011 to 130.235.105.202. Redistribut
,
,

e

-

l

pic media the fractor becomes the integer 2. Employing 74 se
dye test data collected from the U.S. streams~Yotsukura et a
1970; Nordin and Sabol 1974! the FRADE~3! was numerically
solved and then fractorF was determined by fitting the compu
concentrations to the observed concentration distributions.
shown that~1! fractor F is the controlling factor causing the n
Fickian dispersion in natural streams and~2! fractor F varies in
the range from 1.4 to 2.0 around the most frequently occu
value ofF51.65, as shown in Fig. 2. In a total of 74 data s
F51.5– 1.6 occurs with a frequency of 20/74;F51.6– 1.7 ac
counts for 21/74;F51.7– 1.8 also has a frequency of 20/74;
only oneF value falls in the range of 1.9–2.0. This means tha
the existing partial differential equations, based on the clas
Fick’s law directly or indirectly, need to be revised following
new finding that may mark the beginning of a wide applicatio
fractional partial differential equations in hydraulics.

Numerical Schemes for Fractional
Advection-Dispersion Equation

The key to solving FRADE is to properly define the fractio
derivatives and to develop a feasible numerical scheme a
fractional-order derivatives are usually characterized by a
range dependence and they are thus difficult to use in num
computations. There are different definitions of fractional de
tives. The Gru¨nwald definition and other modified definitions
convenient for numerical solutions. Based on the Gru¨nwald defi-
nition of the fractional derivatives, the value of a fractional
ferential operator acting on the functionC(x,t) is an infinite se
ries ~Oldham and Spanier 1974!, i.e.

]FC~x,t !

]xF 5 lim
N→`

1

hFG~2F ! (
j 50

N21
G~ j 2F !

G~ j 11!
C~x2 jh,t ! (4)

whereh5Dx5x/N; N5positive integer; andG()5gamma func
tion.

Oldham and Spanier~1974! also presented the followin
modified Grünwald definition and stated that this definition w
superior to Eq.~4! in its convergence properties:

]FC~x,t !

]xF 5 lim
N→`

1

hFG~2F ! (
j 50

N21
G~ j 2F !

G~ j 11!
CS x1

F

2
h2 jh,t D

(5)

This definition calls for evaluation ofC at points other than th
known Cj values at grid points unlessF50,62,64, . . . . It is,
therefore, necessary to approximate the definition of Eq.~5! so
that all theC values can be evaluated using theCj values at grid
points. The simplest way to do so is to take an integer numb

Fig. 2. Occurring frequency distribution of fractor
the approximation ofF/2. It has been found that theF values are

ion subject to ASCE license or copyright. Visit http://www.ascelibrary.org
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concentrated in the range of 1.4–2.0 with 1.65 having the hig
frequency of occurrence, as shown in Fig. 2. This means thaF/2
ranges from 0.7 to 1.0 with 0.825 having the highest freque
Consequently, a fixed integer constant 1 is assumed forF/2 when
determiningC at a grid point. This leads to

]FC~x,t !

]xF 5 lim
N→`

1

hFG~2F ! (
j 50

N21
G~ j 2F !

G~ j 11!
C~x1h2 jh,t !

(6)

Obviously, the definition of Eq.~6! is based on the Oldham de
nition of Eq. ~5! and Fig. 2.

In analogy with the backward finite-difference expression
integer-order derivatives, Gru¨nwald-Letnikov gave the followin
definition of fractional derivatives by induction~Podlubny 1999!:

]FC~x,t !

]xF 5 lim
N→`

1

hF (
j 50

N

~21! j S F
j DC~x2 jh,t ! (7)

where the fractional binomial coefficientsF over j 5weighting
factors, which reflect the length of the memory of the fractio
derivative and can be calculated using the following recurr
relationships or the fast Fourier transform~Podlubny 1999!:

wj
F5~21! j S F

j D5S j 212F

j Dwj 21
F , w0

F51, j 51,2,3, . . .

(8)

Test calculations indicate that the coefficients ofC in Eqs.~6!
and ~7! give identical values for the sameF and j. It should be
noted that the right-hand side of Eq.~7! is the summation ofN
11 ( j 50,1, . . . ,N) terms, whereas other definitions involveN
terms. As the coefficients in Eqs.~4!, ~6!, and~7! are equivalen
these definitions can, therefore, be expressed in the same f

]FC~x,t !

]xF 5 lim
N→`

1

hF (
j 50

N

wj
FC~x2 jh,t !

3~Grünwald-Letnikov definition! (9a)

]FC~x,t !

]xF 5 lim
N→`

1

hF (
j 50

N11

wj
FC~x1h2 jh,t !

Table 1. Change of Fractional Binomial Coefficients with Memo

Memory
length j 2.0 1.9 1.8 1.7 1.6

0 1 1 1 1 1
1 22 21.9000 21.8000 21.7000 21.6000
2 1 0.8550 0.7200 0.5950 0.48
3 0 0.0285 0.0480 0.0595 0.06
4 0 0.0078 0.0144 0.0193 0.02
5 0 0.0033 0.0063 0.0089 0.01
6 0 0.0017 0.0034 0.0049 0.00
7 0 0.0010 0.0020 0.0030 0.00
8 0 0.0006 0.0013 0.0020 0.00
9 0 0.0004 0.0009 0.0014 0.00

10 0 0.0003 0.0006 0.0010 0.00
11 0 0.0002 0.0005 0.0008 0.00
13 0 0.0001 0.0003 0.0005 0.00
15 0 0.0000 0.0002 0.0003 0.00
3~Deng-Singh-Bengtsson definition! (9b)

J
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In order to construct a numerical scheme for fractional de
tives and thereby for fractional differential equations, the
limit definitions of fractional derivatives in Eqs.~9a! and~9b! are
approximated as

]FC~x,t !

]xF '
1

hF (
j 50

N

wj
FCN2 j

n (10a)

]FC~x,t !

]xF '
1

hF (
j 50

N11

wj
FCN112 j

n (10b)

where superscriptn5time t, and j 5distancex. Eqs. ~10a! and
~10b! will serve as the fundamental basis of the fractional fin
difference method. In order to facilitate numerical computa
for practical application of the series in Eqs.~10a! and~10b!, it is
helpful to know the variation of the weighting coefficients in
series with the memory lengthj and with factorF. To that end
coefficients in the above definitions of fractional derivatives
calculated using Eq.~8! and listed in Table 1 and plotted agai
the memory lengthj in Fig. 3 for 1<F<2.

Both Table 1 and Fig. 3 show that the weighting coeffici
decrease rapidly whenj >3. Table 1 illustrates thatw152F al-
ways andw2 decreases from 1 to 0 whenF varies from 2 to 1. N
matter what value the fractor takes on, the weighting coeffic
wj become very small whenj >3. FractorF is greater than 1.4
all the data sets used in this paper. The maximum coefficientwj is
equal to 0.064 whenj 53, corresponding toF51.6, as indicate
in Table 1. This means that the contribution of a single t

Fig. 3. Variation of fractional binomial coefficients with memo
length

gthj and FractorF

ractorF

1.5 1.4 1.3 1.2 1.1

1 1 1 1 1
1.5000 21.4000 21.3000 21.2000 21.1000 21

0.3750 0.2800 0.1950 0.1200 0.0550
0.0625 0.0560 0.0455 0.032 0.0165
0.0234 0.0224 0.0193 0.0144 0.0078
0.0117 0.0116 0.0104 0.0081 0.0045
0.0068 0.0070 0.0064 0.0051 0.0030
0.0044 0.0046 0.0043 0.0035 0.0021
0.0030 0.0032 0.0031 0.0025 0.0015
0.0022 0.0024 0.0023 0.0019 0.0012
0.0016 0.0018 0.0018 0.0015 0.0009
0.0013 0.0014 0.0014 0.0012 0.0007
0.0008 0.0009 0.0009 0.0008 0.0005
0.0006 0.0006 0.0007 0.0006 0.0004
ry Len

F

2

00
40
24
08
61
38
26
18
14
10
06
04
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n tail
becomes negligible to the whole series afterj >3. However, the
summation of the termsj >3 may remain significant especia
when the number of the terms is large or the range is long.
a feature is called the long-range dependence or correlati
fractional derivatives. Anyway, a distinct change of behavio
the series takes place whenj >3. In other words,j 53 appears t
be a demarcation. To reflect the change, the series in Eqs.~10a!
and ~10b! can be expressed in two parts as

]FC

]xF '
Cm

n 2FCm21
n 1w2

FCm22
n

DxF 1FT1

@w2
F5F~F21!/2, m51,2,3, . . . # (11a)

]FC

]xF '
Cn11

n 2FCm
n 1w2

FCm21
n

DxF 1FT2 ~m51,2,3, . . . !

(11b)

where

FT151/DxF(
j 53

m

wj
FCm2 j

n

FT251/DxF (
j 53

m11

wj
FCm112 j

n

The first three terms of the series are called a Gaussian
because for an instantaneous initial condition the numerical
tion of FRADE containing the first three terms exhibits a Ga
ian distribution, as indicated in Fig. 4 for the case of fractoF
51.695. Except for the first three terms, the remaining term
the series are designated as fractional tail~FT! or non-Gaussia
curve since they make the distribution skewed and cause a
tail. It should be noted that the distribution with a long tail a
marked by ‘‘non-Gaussian curve’’ in Fig. 4 is the complete
merical solution of FRADE comprising both the non-Gaus
tail part and the Gaussian core part. Actually, the contribu
from the core and tail parts vary with time and distance.
farther from the source is the location, the smaller the cont
tion is from the core part and the greater the contribution is
the tail part, and vice versa. However, numerical experim
reveal that both magnitude and distribution of the non-Gau
tail are determined by the Gaussian core. Consequently
Gaussian core is the controlling part of the series but the
Gaussian tail is the dominant mechanism underlying the lon
distribution or causing the long-range dependence of the di

Fig. 4. Comparison between Gaussian core and non-Gaussia
sion processes in natural media.
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It is apparent from Table 1 that Eq.~11b! reduces to the fo
ward finite-difference scheme and Eq.~11a! to the backwar
finite-difference scheme whenF51. As both the first-order fo
ward scheme and backward scheme have the first-order err
two schemes~11a! and ~11b! possess the same error order—
first order whenF51. When F52, Eq. ~11b! recovers th
second-order central finite-difference scheme and no corres
ing scheme can be found for Eq.~11a! in the integer-order finite
difference methods. The error order of the schemes~11b! and
~11a! can be analyzed by means of the Taylor series expan
Using the Taylor expansion and conducting some simple m
ematical manipulations yield

]2C~x!

]x2 5
C~x1h!22C~x!1C~x2h!

h2 2
]4C~x!

]x4

h2

12
2¯

(12)

]2C~x!

]x2 5
C~x!22C~x2h!1C~x22h!

h2 1
]3C~x!

]x3 h

27
]4C~x!

]x4

h2

12
2¯ (13)

Eq. ~12! indicates that the scheme of Eq.~11b! possesses th
second-order accuracy whenF52. It is, therefore, inferred th
scheme~11b! possesses theF-th order accuracy when 1<F<2.
It can be seen from Eq.~13! that the scheme of Eq.~11a! has the
first-order accuracy whenF52. It is then inferred that the schem
of Eq. ~11a! possesses the first-order accuracy when 1<F<2.
For the convenience of reference, the fractional finite-differ
scheme in Eq.~11b! is designated as the ‘‘F.3 Central Scheme
where ‘‘F’’ means that the scheme isF-th order accurate for th
fractional derivative; ‘‘3’’ signifies that the first three terms in
series are used to approximate the main property of the w
series in Eqs.~11a! and ~11b!; and ‘‘•’’ implies that this is a
numerical scheme for fractional derivatives. Likewise, Eq.~11a!
is termed as the ‘‘1.3 Backward Scheme.’’ After an error anal
the stability requirements of theF.3 Central Scheme and the
Backward Scheme can be analyzed in conjunction with the
tional advection-dispersion equation~FRADE! @Eq. ~3!#. To fa-
cilitate manipulation, the first three terms are utilized in the
lowing stability analysis.

von Neumann Stability Analysis of Fractional
Numerical Schemes

Stability analysis is utilized to compare the performance an
find the convergent conditions of the above derived fracti
finite-difference schemes. Although several methods, such a
energy method, the von Neumann analysis~also called the Fourie
series method!, and the matrix method, are available for stab
analysis, the von Neumann method is relatively simple to a
and provides considerable insight into the performance of d
ent algorithms. Consequently, the von Neumann stability ana
is most widely used. However, this method is local and is
applicable to linear equations with constant coefficients. Th
fore, a common assumption made in the von Neumann meth
that the coefficients of the difference equations vary so slow
to be considered constant in space and time. The concept b
the von Neumann analysis is that the finite-difference approx
tion Cj

n on the lattice (nDt, j Dx) of the functionC(t,x) is de-
composed into convolution of the independent solutions or e
modes or harmonics, which are the normalized sine and c

waves. Each sine/cosine wave is of the form~Press et al. 1988!
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jneIk~ j Dx! or Cj
n5jneIk~ j Dx! ~ I 2521! (14)

where n and j 5step numbers int and x, respectively;k5real
spatial wave number; andj5complex number which depends
the wave numberk and the finite-difference scheme. It is ea
found from Eq.~14! thatCj

n11/Cj
n5j. Therefore, the ratioj of C

from one time step to the next is the ‘‘amplification factor.’
ju<1 for all k, then the Fourier components decay as tim

advanced step by step or as they are processed by an ite
solver, the difference scheme is stable. Because of the line
havior of the Fourier series, it will suffice to consider a sin
Fourier mode which is a priori generic. To find the amplifica
factor j, the eigenmodes need to be inserted into the schem
the stability properties of the pure advection equation have
extensively investigated~Press et al. 1988!, this paper only dis
cusses the stability of the pure fractional dispersion equ
separated from Eq.~3!, i.e.

]C

]t
5KF

]FC

]xF (15)

Detailed derivations of the stability analysis can be found in
appendix and in Deng~2002!.

F.3 Central Scheme for Fractional Dispersion Equation

Explicit Algorithm
Application of theF.3 Central Scheme without the tail part
combination with the forward time scheme to Eq.~15! results in
the explicit algorithm of the fractional dispersion equation as

Cm
n115Cm

n 1a~Cm11
n 2FCm

n 1w2
FCm21

n ! Fa5
DtKF

~Dx!F
, m5 j G

(16)

Inserting the trial solution~14! into Eq. ~16! and conductin
mathematical manipulations by using some familiar com
number identities yields the stability bound for the explicitF.3
Central Scheme

a<
2

11w2
F1F

or
DtKF

~Dx!F <
2

11w2
F1F

(17a)

From Table 1 it is seen thatw2
F51 in case ofF52, resulting in

a<1/2. It implies that

Dt<
~Dx!2

2KF
(17b)

This condition~17b! has been widely used as a stability rest
tion for the integer-order dispersion equation~Press et al. 1988!.
Consequently, the inequality of Eq.~17a! is the general stabilit
criterion of the fractional dispersion equation. The physical in
pretation of the requirement of Eq.~17a! is that the maximum
allowable time step is, up to a numerical factor, the disper
time across a cell of widthDx. For example, ifF51.7, it is found
from Table 1 thatw2

F50.595. In this case, the time step should
chosen in the range ofDt<0.607(Dx)1.7/KF . The condition in
Eq. ~17a! is simple, although the process of deriving the ineq
ity is complicated.

Implicit Algorithm
Now, consider the following implicit algorithm of Eq.~15! when

the F.3 Central Scheme without the tail part is used.

J

Downloaded 08 Sep 2011 to 130.235.105.202. Redistribut
Cm
n115Cm

n 1a@l~Cm11
n11 2FCm

n111w2
FCm21

n11 !

1~12l!~Cm11
n 2FCm

n 1w2
FCm21

n !# (18)

in which the weighting factorl is a chosen number in the inter
@0,1#. Carrying out some complex number transforms gives
expression of the amplification factoruju as follows:

uju5
uw~11w2

F1F !21u

b~11w2
F1F !11

(19)

Then, consider three special cases of the weighting factorl. ~1!
l50: In this case, the substitution ofb5al50 and w5a(1
2l)5a into Eq. ~19! recovers the amplification factor of t
explicit case. This is easily found by comparing Eq.~16! with Eq.
~18! for l50. ~2! l51: In this case, substitution ofb5al5a
andw5a(12l)50 into Eq.~19! yields

uju5
11a~11F1w2

F!

@11a~11F1w2
F!#2 5

1

11a~11F1w2
F!

(20)

It is apparent thatuju<1 for all a and factorF and the stability i
guaranteed under any condition. TheF.3 Central Scheme i
therefore, unconditionally stable forl51. If F52, w2

F51 leads
to uju51/(114a). This result is consistent with the existing o
of the integer-order dispersion equation~Press et al. 1988!. ~3!
l50.5: In this case theF.3 Central Scheme corresponds to
Crank-Nicholson method of the integer-order dispersion equa
Substitutingb5al50.5a andw5a(12l)50.5a into Eq.~19!
yields

uju5
u@0.5a~11F1w2

F!#221u

@0.5a~11F1w2
F!11#2 5

u0.5a~11F1w2
F!21u

0.5a~11F1w2
F!11

(21)

It is obvious that the stability conditionuju<1 holds for alla and
F as w2

F is determined byF. The F.3 Central Scheme is, the
fore, also unconditionally stable forl50.5. If F52, w2

F51
yields uju5u2a21u/(2a11). This is the stability requireme
posed for the integer-order dispersion equation~Press et al. 1988!.
In general, it can be easily proved that theF.3 Central Scheme
unconditionally stable for 0.5<l<1.0 anda>0. It follows from
the above analysis that theF.3 Central Scheme recovers the c
responding central space scheme of the integer-order disp
equation whenF52.

1.3 Backward Scheme for Fractional Diffusion
Equation

Explicit Algorithm
Application of the 1.3 Backward Scheme in conjunction with
forward time scheme to Eq.~15! results in another explicit alg
rithm of the fractional diffusion equation

Cm
n115Cm

n 1a~Cm
n 2FCm21

n 1w2
FCm22

n ! ~m5 jh ! (22)

Following the similar procedures and manipulations as theF.3
scheme, the amplification factoruju can be finally expressed in
simple form

uju511a~11w2
F1F ! (23)

Eq. ~23! indicates that the amplification factoruju>1 always for
all values ofa>0 andF. It means that the numerical soluti
grows as it is dispersed. Consequently, the 1.3 Backward Sc

in the explicit case is absolutely unstable and cannot be used.
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Implicit Algorithm
Now, consider the implicit case of the 1.3 Backward Schem
this case the numerical algorithm of the pure dispersion Eq.~15!
can be written as follows:

Cm
n115Cm

n 1a@l~Cm
n112FCm21

n11 1w2
FCm22

n11 !

1~12l!~Cm
n 2FCm21

n 1w2
FCm22

n !# (24)

Following the similar procedures and manipulations as the
plicit algorithm of theF.3 scheme, the amplification factoruju can
be finally expressed as

uju5Uw~11w2
F1F !11

b~11w2
F1F !21U (25)

For l50, Eq. ~24! becomes the explicit expression~22!. In the
meantime, Eq.~25! recovers its counterpart Eq.~23!. For l
50.5, w5b50.5a and uju>1 holds always. Therefore, the a
plification factor uju>1 for any value ofa and F and the 1.3
Backward Scheme is absolutely unstable in the case of<l
<0.5. Forl51, w50 andb5a, Eq. ~25! becomes

uju5
1

ua~11w2
F1F !21u

(26)

The stability of solution requiresuju<1, i.e.

a~11w2
F1F !21>1 or a~11w2

F1F !21<21 (27)

In Eq. ~27!, the second inequality is unrealistic. The first ineq
ity leads to the stability limit

a>
2

11w2
F1F

(28)

Eq. ~28! shows that the 1.3 Backward Scheme is condition
stable in the implicit case.

The stability analysis further demonstrates that theF.3 Centra
Scheme is indeed more accurate and convenient than th
Backward Scheme having a narrower range of thea value. There
fore, theF.3 central scheme is suggested for the numerical
tion of FRADE. Moreover, the results of the stability analysis
show that the existing stability criteria for the pure integer-o
dispersion equation are the special cases of that for the pure
tional dispersion equation. Therefore, the stability criteria der
in this paper are the general requirements of stability for bot
integer-order and the fractional-order dispersion equations.

Application of the Fractional Dispersion Model to
Natural Rivers

A semi-Lagrangian approach~Holly and Preissmann 197
Karpik and Crockett 1997! is one of the most popular spl
operator methods and was thus used in this paper since it s
the advective and diffusive terms of an advection-disper
equation separately by employing the most efficient metho
each term. In the pure advection step, the solution was foun
first tracking back the upstream departure point along the ch
teristic line of the scalar particle and then estimating its con
tration at the previous time level by interpolating the known c
centration values at the two computational grid nodes brack
the departure point using cubic spline interpolation.

Since the pure advection process is not subject to any sta
limitation on the time step it is desirable to render the pure

persion process in Eq.~15! unconditionally stable. To that end,
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the full implicit form of Eq. ~18! is used and the fractional tail
added to the equation, leading to

2aCm11
n11 1~11Fa!Cm

n112w2
FaCm21

n11

5Cm
n 1a (

nt50

n

(
i 5m12

N

wj
FCi

nt (29)

wherem51,2,3, . . . ,N21 andj 5 i 112m. As all the quantitie
appearing on the right-hand side are known, Eq.~29! may be
simplified by grouping terms as

OCm21
n11 1PCm

n111QCm11
n11 5Rn (30a)

where

O52w2
Fa, P511Fa, Q52a

R5Cm
n 1a (

nt50

n

(
i 5m12

N

wj
FCi

nt (30b)

Form51 toN21, Eq.~30! can be written as a tridiagonal matr
a system of simultaneous linear algebraic equations. Ther
the equations can be efficiently solved using the Thomas A
rithm.

To illustrate the applicability of the above-developed fractio
dispersion model~FDM! characterized by the FRADE and
F.3 scheme, dye test data, measured on four reaches of the
cacy River~Nordin and Sabol 1974! and the Missouri River be
tween Sioux City, Iowa, and Plattsmouth, Nebraska~Yotsukura
et al. 1970!, were employed as these data have relatively
accuracy and were used as typical evidence of the success
dead~storage! zone model~Czernuszenko et al. 1998; Seo a
Cheong 2001!. Fig. 5 demonstrates comparisons between the
observed and the model predicted concentration profiles for
reaches of the Monocacy River. Although the first theore
curve on the left overestimates the values in the initial stag
concentration rise, the agreement between the measuremen
the computed curves are excellent in general. Fig. 6 shows
parisons between field dye test data measured on the Mi
River and theoretical dispersion processes simulated by the
The four curves from the left to the right in Fig. 6 correspon
the four observation sections: Decatur Bridge, Blair Bridge,
sar-ben Bridge, and Plattsmouth Bridge. In terms of the core
or for the main part of a concentration hill, the prediction of

Fig. 5. Comparison between measured and predicted concent
profiles for Monocacy River
FDM is comparable with or better than the best of the dead-zone
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models. However, the prediction of the FDM is much better
that of the dead-zone model in terms of the long tail.

Furthermore, the FDM has less parameters~two! than do the
dead-zone models that have at least four parameters whic
allowed to vary. In the above calculations the longitudinal dis
sion coefficientKF is determined byKF5(3,600K2)F/2/1,609F to
maintain the harmony of variable units, whereKF and K2 carry
the dimensions of mileF/hour and meter2/second, respectively.K2

can be determined using the methods proposed by Deng
~2001, 2002!. For rivers parameter fractor ranges from 1.4 to
The more heterogeneous the medium is~or the more dead-zon
there are in the river!, the smaller than 2 is the fractorF. F can be
estimated using a moment-based method. Details of the m
will be addressed in a future study. It should be emphasized
the contribution from the tail part increases with distance
time, signifying a growing variance in the concentration pro
The FDM gives predictions which are much closer to the ob
vations than the existing dispersion models due to the existen
the long-range dependence part: Non-Gaussian tail in the F
Consequently, the FDM fully meets the three qualitative crit
for a sound dispersion model and the results of above com
sons also illustrate its soundness.

Conclusions

The main contribution of the paper lies in the construction
new numerical algorithm,F.3 central finite-difference schem
and its stability conditions for solving the fractional advecti
dispersion equation~FRADE!. The FRADE is derived by exten
ing Fick’s first law from isotropic media to heterogeneous m
and is particularly suitable for description of the highly skew
and heavy-tailed dispersion processes observed in rivers and
natural media. The FRADE is mainly characterized by param
fractor F acting on the dispersion term. For natural streams,F is
in the range of 1.4–2.0. For 1<F<2, the fractional derivative
can be discretized into two parts: A Gaussian core consistin
the first three terms of the series and a non-Gaussian tail
prised by the remaining terms of the series. With three te
included, theF.3 scheme always performs better than the b
ward scheme 1.3 in terms of error and stability analyses.
existing stability conditions of the integer order dispersion e
tion are found to be the special cases of the general sta

Fig. 6. Comparison between measured and predicted concent
profiles for Missouri River
requirements derived for the pure fractional dispersion equation.

J
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The FRADE and theF.3 scheme form a new dispers
model, the fractional dispersion model, that captures the
mechanism causing the persistence or the long tail of the d
sion processes in natural media. The fractional dispersion m
is a generalized dispersion model and thus can be easily a
to any field where the integer-order advection-dispersion equ
is used. The predicted distribution of scalar concentration b
fractional dispersion model matches the observations measu
natural streams quite well if the values of fractorF are properly
estimated.

Appendix: Stability Analysis

F.3 Central Scheme for Fractional Dispersion Equation

Explicit Algorithm
Inserting the trial solution~14! into Eq. ~16! yields

jn11eIk~ jh !5~aeIkh1~12aF !1aw2
Fe2Ikh!jneIk~ jh ! (31)

Eq. ~31! leads to

j5aeIkh1~12aF !1aw2
Fe2Ikh (32)

To obtain an expression forj, the following familiar identities ar
useful:

eIu1e2Iu

2
5cosu (33a)

eIu2e2Iu

2I
5sinu (33b)

12cosu52 sin2S u

2D (33c)

eIu5cosu1I sinu (34a)

e2Iu5cosu2I sinu (34b)

Substitution of Eqs.~34a! and ~34b! with u5kh into Eq. ~32!
leads to

j5a~coskh1I sinkh!1~12aF !1aw2
F~coskh2I sinkh!

5~12aF !1a~11w2
F!coskh1Ia~12w2

F!sinkh (35)

Sincej is a complex number, it can be written as

j5uju~cosu1I sinu! (36)

Substituting Eq.~36! into Eq. ~35!, and equating real and ima
nary parts give two expressions foruju andu in terms ofa andh:

ujucosu5~12aF !1a~11w2
F!coskh (37)

ujusinu5a~12w2
F!sinkh (38)

Squaring and adding Eqs.~37! and~38! result in the mode of th
amplification factorj:

uju25@~12aF !1a~11w2
F!coskh#21@a~12w2

F!sinkh#2

5a2b11~w2
F!2c1~12aF !222a~12aF !~11w2

F!

3@2 sin2~kh/2!21#12w2
Fa2$2@2 sin2~kh/2!21#221%

(39)

Eq. ~33c! is employed in deriving Eq.~39!. To meet the stabilit
condition uju<1 for any value of kh, the extreme case
sin2(kh/2)51 is considered. In this case, Eq.~39! can be simpli

fied as
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uju25a2@11~w2
F!2#1~12aF !222a~12aF !~11w2

F!

12w2
Fa2 (40)

Eq. ~40! can be recast into the following simpler form:

uju25@a~11w2
F!2~12aF !#25@a~11w2

F1F !21#2 (41)

The inequalityuju<1 implies

21<a~11w2
F1F !21<1 (42)

In Eq. ~42!, the first inequality is apparent and the second ineq
ity leads to Eq.~17a! in the main text.

Implicit Algorithm
Rearranging Eq.~18! so that all (n11) terms are on the left-han
side and all~n! terms, which are already known, are on the rig
hand side

2alCm11
n11 1~11Fal!Cm

n112w2
FalCm21

n11

5a~12l!Cm11
n 1@12Fa~12l!#Cm

n

1wFa~12l!Cn (43)
2 m21

2
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Substituting the independent solution of Eq.~14! into Eq. ~43!
yields

@2aleIkh1~11Fal!2w2
Fale2Ikh#jn11eIk~ jh !

5$a~12l!eIkh1@12Fa~12l!#

1w2
Fa~12l!e2Ikh%jneIk~ jh ! (44)

Simple manipulation yields

j5
weIkh1@12Fw#1w2

Fwe2Ikh

2beIkh1~11Fb!2w2
Fbe2Ikh (45)

wherew5a(12l) andb5al are introduced. Using Eqs.~34a!
and ~34b! with the replacement ofu5kh, Eq. ~45! can be rear
ranged as

j5
~12wF !1w~11w2

F!coskh1Iw~12w2
F!sinkh

~11bF !2b~11w2
F!coskh2Ib~12w2

F!sinkh
(46)

Multiplication of both the numerator and the denominator by

conjugate complex number of the denominator yields
j5
@~12wF !1w~11w2

F!coskh#@~11bF !2b~11w2
F!coskh#2wb@~12w2

F!sinkh#2

@~11bF !2b~11w2
F!coskh#21@b~12w2

F!sinkh#2

1I
@~12wF !1w~11w2

F!coskh#@b~12w2
F!sinkh#1@~11bF !2b~11w2

F!coskh#@w~12w2
F!sinkh#

@~11bF !2b~11w2
F!coskh#21@b~12w2

F!sinkh#2 (47)

Following the same procedure with the derivation of Eq.~39!, the mode of the amplification factoruju can be expressed as

uju25H ~12wF !~11bF !1~w2b12bwF !~11w2
F!coskh2wb@11~w2

F!2#22wbw2
F~2 cos2 kh21!

~11bF !222b~11bF !~11w2
F!coskh1b2@11~w2

F!2#12b2w2
F~cos2 kh2sin2 kh! J 2

1H b~12wF !~12w2
F!sinkh1w~11bF !~12w2

F!sinkh

~11bF !222b~11bF !~11w2
F!coskh1b2@11~w2

F!2#12b2w2
F~cos2 kh2sin2 kh!J 2

5$^~12wF !~11bF !2~w2b12bwF !~11w2
F!~12coskh21!2wb@11~w2

F!2#

22wbw2
F@2~12coskh21!221#&/^~11bF !212b~11bF !~11w2

F!~12coskh21!1b2@11~w2
F!2#

12b2w2
F@2~12coskh21!221#&%2

1H ~b1w!~12w2
F!sinkh

~11bF !212b~11bF !~11w2
F!~12coskh21!1b2@11~w2

F!2#12b2w2
F@2~12coskh21!221#J

2

(48)

Using Eq.~33c! and notingu5kh lead to

uju25$^~12wF !~11bF !2~w2b12bwF !~11w2
F!@2 sin2~kh/2!21#2wb@11~w2

F!2#

22wbw2
F$2@2 sin2~kh/2!21#221%&/^~11bF !212b~11bF !~11w2

F!@2 sin2~kh/2!21#1b2@11~w2
F!2#

12b2w2
F$2@2 sin2~kh/2!21#221%&%2

1H ~b1w!~12w2
F!sinkh

~11bF !212b~11bF !~11wF!@2 sin2~kh/2!21#1b2@11~wF!2#12b2wF$2@2 sin2~kh/2!21#221%J
2

(49)

2 2
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of
To ensure the stability requirementuju<1 for all values ofkh, the worst case of sin2(kh/2)51 is considered as all other values
sin2(kh/2) lead to smalleruju values. The condition of sin2(kh/2)51, sin(kh)50 leads to the disappearance of the second part of Eq.~49!.
Thus, Eq.~49! can be simplified as

uju25H ~w2b12bwF !~11w2
F!1wb~11w2

F!22~12wF !~11bF !

~11bF !212b~11bF !~11w2
F!1b2~11w2

F!2 J 2

5
u@w~11w2

F1F !21#@11b~11w2
F1F !#u

@11b~11w2
F1F !#2 (50)

The simplest form ofuju is expression~19! in the main text.
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Notation

The following symbols are used in this paper:
C 5 passive scalar~e.g., concentration of pollutants!;
F 5 fractor ~fractional differential order of the

dispersion term!;
h 5 distance step (5Dx);
J 5 flux of dispersion;
K 5 dispersion coefficient;

O,P,Q 5 lower, main, and upper diagonals of the coefficien
matrix;

R 5 right-hand side of the linear algebraic equation
system;

t 5 time;
U 5 flow velocity;

wj
F 5 series coefficient;
x 5 distance along the flow direction;

a,b,w 5 numerical constants;
Dt 5 time step;
Dx 5 distance step;

l 5 weighting factor; and
j 5 amplification factor.
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