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Abstract: Numerical schemes and stability criteria are developed for solution of the one-dimensional fractional advection-dispersion
equation(FRADE) derived by revising Fick’s first law. Employing 74 sets of dye test data measured on natural streams, it is found that
the fractional ordeF of the partial differential operator acting on the dispersion term varies around the most frequently occurring value
of F=1.65 in the range of 1.4 to 2.0. Two series expansions are proposed for approximation of the limit definitions of fractional
derivatives. On this ground, two three-term finite-difference schemes—*1.3 Backward Scheme” having the first-order accur&c$ and “
Central Scheme” possessing tReth order accuracy—are presented for fractional order derivativesFThecheme is found to perform

better than does the 1.3 scheme in terms of error and stability analyses and is thus recommended for numerical solution of FRADE. Th
fractional dispersion model characterized by the FRADE and-tBescheme can accurately simulate the long-tailed dispersion processes

in natural rivers.
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Introduction tions generally yield a Gaussian spatial distribution or a skewed
temporal distribution(both distributions are also called the Fick-
ian solution for an instantaneous point sourgeassive and con-
stant velocity and dispersion coefficie(Rutherford 1994; Fis-
cher et al. 197p One characteristic of the Gaussian spatial profile
solution is that its variance increases proportionally with time and

The advection-dispersion equatiOhDE) is widely used to solve
a range of problems in physical, chemical, and biological sci-
ences, involving dispersion or diffusion, such as mixing in inland
and coastal water@-ischer et al. 1979 transport of thermal en-
ergy in a plasma, flow of a chemically reacting fluid from a flat

surface, and evolution of populatiofdhnson et al. 1995The i'Fs peak concentration decr_eases in a manner inversely propor-
fundamental form of the one dimensiorfdD) ADE can be ex-  tional to the square root of time. _
pressed as It can be proved that the Fickian temporal peak concentration

C aC 92 decays inversely with the square root of distara@nd the tem-

_ — =K——p (1) poral variance increases proportionally witlasx becomes large

ot X X (Hunt 1999. However, observations of tracer clouds in rivers

where C=passive scalafe.g., temperature or concentration of have revealed persistent deviations from the behavior predicted
contaminants or dy@sU=mean advective fluid velocity or the by the Fickian solutioriNordin and Troutman 1980Data col-
drift in the x direction; K = dispersion coefficient; ant=time. lected from nearly 100 streams and rivers show that the unit-peak
Eq. (1) is derived following Fick’s first law and in principle it concentration tends to attenuate in proportion to the travel time
holds after the initial mixing period or for the far field where the With the 0.89 power, not the 0.5 pow&lobson 2001 Day (Hunt
longitudinal shear flow dispersion becomes a dominant mecha-1999 found in 49 different runs that the measured temporal peak
nism of pollutant mixing in rivers. concentrations decayed inversely within which n varied in the
Analytical solutions of Eq(1) have been extensively investi- range.of 0.75-1.59 and had a mean value of .1.17 and a standard
gated under various initial and boundary conditions. These solu-deviation of 0.21. Observed values for the variance were propor-
tional tox™ in which m ranged from 1.84 to 2.3 with a mean of
IAssistant Professor, Dept. of Civil and Environmental Engineering, 2.06. Fig. 1 shows a typical example of the non-Gaussian tempo-
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Scholar, Dept. of Water Resources Engineering, Lund Univ., Box 118, Monocacy River(Nordin and Sabol 1974
S-22100 Lund, Sweden. A distinguishing characteristic of the distribution in Fig. 1 is a
2A. K. Barton Professor, Dept. of Civil and Environmental Engineer- steep leading edge followed by a flat long tail stretching up-
ing, Louisiana State Univ.,, Baton Rouge, LA 70803-6405. E-mail: stream, demonstrating a greater variance than that of the Fickian
cesing@Isu.edu o . solution. On the other hand, to fit the Fickian solution to observed
SProfessor, Dept. of Water Resources Engineering, Lund Univ., Box data, Day(Hunt 1999 also found that the dispersion coefficient
118, $-22100 Lund, Sweden. _ _should be increased indefinitely with distance downstream. In ei-
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with laboratory and field data. These results demonstrate that con-
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20 characterized by a decay in the skewness, which is not displayed
) o’ by the observed distributiondordin and Troutman 1980 Fur-
a 151 % thermore, the adjusted parameters of the dead zone models appear
,é ° ¢ to be physically unreasonabl(€zernuszenko et al. 1988Hunt
.g 10 4 ° (1999 found that the temporal variance and peak concentration
g:s 5] ° °, decay rate of the dead-zone model have behaviors that are similar
8 °°.,,° to the corresponding results for the Fickian model. In short, the
0 lo® , $°°0900000000000a dead zone models are still troublesome in both the goodness of fit
6 8 10 12 14 and the physical relevance of their parameters. It should be
Time since tracer injection (hours) pointed out that some discrepancies between predictions of the

1D models and observations are unavoidable, since the 1D mod-
Fig. 1. Non-Gaussian dispersion of tracer in Monocacy River  els numerically approximate the real-world phenomena by a one-
dimensional numerical algorithm. The fundamental causes of the
dispersion processes in natural rivers are velocity shearing of the

is necessary for a better simulation of non-Fickian dispersion pro- Profile and the storage-release effect of dead-zones. _
cesses. As a result, extensive efforts have been made to revise the From the above discussion it can be seen that a sound disper-
Fickian theory and thus the classical ADE in Ed). sion model should possess the foIIO\_/vmg chgractens(ﬂjs‘:l’he

A promising approach for revision of the Fickian theory is the Variance of the predicted qoqcentrathn profiles should be .much
application of fractional derivatives, because they permit a de- hlgher_than_ that _of the F|_ck|an profiles and thus a fractional
scription of continuous time random walk6TRW) that resultin ~ advection-dispersion equation should be the best opt®niThe
long tail distributions by assigning a joint space-time distribution Storage-releasgeaction effect is induced by the dispersion pro-
to individual particle motiongMetzler and Klafter 2000 leading cess and thus it should be related to the dispersion coeffiient
to fractional advection-dispersion equatiGiDE). The main ad-  and be either included in the new dispersion ténote: this term
vantage of the FADE is that it has solutions which resemble the in @ sound model should be different from the dispersion term in
highly skewed and heavy-tailed breakthrough curves observed inthe classical ADEor produced automatically by the new disper-
field and whose variance is greater than that of the GaussianSion t(_erm. It |s_not necessary to_art|f|(_:|ally qdd a storage-release
distribution and may grow to be infinite. By modifying Fick's law ~ (réaction term in a sound advection-dispersion equati@.The
and using the eigenvector equation and fractional Fokker-Planck€W dispersion term can be divided into two parts: The first part
equation, Chaveg1998 proposed a symmetrical FADE for iso- should represent the dispersion process in the bulk flow and the
tropic media and an asymmetrical FADE with two different dif- Second part should be able to reflect the long-range dependence
fusivities for anisotropic media. Fundamental solutions of FADE feature of the dispersion process in natural media or the hierar-
are Lavy's a-stable distribution. Based on CTRW, Meerschaert chical release process caused by the dead-zones. The features
et al. (1999 extended the 1D FADE to a multidimensional form actually can be employed as qualitative criteria for judging
with a skewness parameter. whether a dispersion model is reasonable or not.

Except for some special initial and boundary conditions, ana- 1 he overall goal of this paper is to develop a physically based
lytical solutions of FADE are difficult to find. In order to make fractional-order advection-dispersion equation and an efficient
the practical application of FADE available, Benson et(2000 numerical scheme for the solution of the equation so that the
took two identical diffusivities in Chaves’ FADE or the skewness Non-Fickian dispersion processes involved in various fields in-
parameters of Meerschaert's FADE and used the Fourier trans-cluding natural rivers can be accurately predicted. To that end, the
form technique to obtain an analytical solution with two sym- SPecific objectives are therefo(#) to derive a process-oriented
metrical tails. The FADE approach appears to have the potentialand physically based fractlongl advection-dispersion equation
for the prediction of non-Fickian dispersion processes, but its (FRADE); (2) to develop numerical schemes for FRADB) to
wide application is hindered by the difficulty in obtaining analyti- determine stability requirements of numerllcal.schemes for differ-
cal solutions, especially when reaction terms are incorporated.€nt cases; ant) to demonstrate the application of the FRADE
Another problem is that shear flow dispersion is not explicity and the new numerical scheme and to test the efficacy of the
included in FADES. All the existing FADES are derived from the Model.

CTRW of molecular particles and thus they are actually just frac-

tional advection-diffusion equations instead of the real fractional

advection-dispersion equations. This means that the existingFractional Advection-Dispersion Equation

FADEs are only applicable to the diffusion process dominated by

molecular random walks. However, the shear velocity-caused dis-It is essential to understand the mechanisms of dispersion for
persion plays a far more important role in actual dispersion pro- development of a reasonable ADE, as the ADE is the result of the
cesses in turbulent shear flows than does the molecular diffusioncontinuity equation coupled with some kind of a dispersion flux
(Fischer et al. 1979 In fact, molecular diffusion is negligible as  law, such as Fick’s law. In general, if there is no significant stor-
compared to the shear flow dispersion. age effect of dead zones, a real dispersion process is the combi-

Another alternative of the Fickian ADE is the dead-zone mod- nation of three different processéSischer et al. 1979 (1) The
els. The very long tails are often attributed to the trapping effect molecular diffusion or the Fickian diffusiori2) the turbulent dif-
of particles in dead zonddlordin and Troutman 1980The dead fusion; and(3) the shear flow dispersion. Of these mechanisms,
zone models simulate the heavy tail distribution by artificially the molecular diffusion always exists in the transport processes of
adding a reactioristorage-releagderm in Eq.(1) and adjusting scalars no matter whether the fluid is in a static state or in a
the reaction parameters to match the observed dispersion distriflowing state and is laminar flow or turbulent flow. The turbulent
butions(Seo and Cheong 20RUsually, the dead zone models fit  diffusion is usually anisotropic and highly dependent on the in-
the observed data more closely than does @&. but they are volved length and velocity scales. The shear flow dispersion is
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induced by the velocity gradients due to the viscosity of the fluid
and the resistance of the fluid boundary, and thus it may occur in
both laminar and turbulent flow. As compared to the dispersion,
the diffusion contribution in the longitudinal direction is negli-
gible. Therefore, this paper mainly focuses on dispersion and ad-
vection processes.

Occurring Frequency (%)

Fractional Advection-Dispersion Equation 145 155 165 175 185 195
. .. . X i Fractor
For the convenience of revision of Fick's first law, EQ) is

recast into the following form: Fig. 2. Occurring frequency distribution of fractor
aC aC  a(—J) aF~1c

HJ’_ &—T andJ:—KFW (2) ) ) ) .

pic media the fractor becomes the integer 2. Employing 74 sets of
in which F=2 in terms of Fick’s first law;)=dispersion flux; and dye test data collected from the U.S. streaf¥stsukura et al.
Kg=dispersion coefficient, generally regarded as a constant. 1t1970; Nordin and Sabol 1974he FRADE (3) was numerically
should be noted that the classical Fick’s first law wWih-2 is solved and then fractdf was determined by fitting the computed
valid only for isotropic media. Unfortunately, natural media are concentrations to the observed concentration distributions. It is
rarely isotropic and almost fully heterogeneous. For anisotropic shown that(1) fractor F is the controlling factor causing the no-
mediaF should be a fraction, including the integer constant of 2 Fickian dispersion in natural streams af®l fractor F varies in
as a special value. Physically, the fractional differential ofdler the range from 1.4 to 2.0 around the most frequently occurring
represents the heterogeneity of natural media. For instance, invalue of F=1.65, as shown in Fig. 2. In a total of 74 data sets,
natural rivers and streams there is a wide spectrum of dead-zonesi =1.5-1.6 occurs with a frequency of 20/7B=1.6—-1.7 ac-
such as reverse flows induced by bends and pools, side pocketszounts for 21/74F =1.7—1.8 also has a frequency of 20/74; and
zones between dikes, turbulent eddies, and wakes behind bed ironly oneF value falls in the range of 1.9—2.0. This means that all
regularities and roughness elemefmigples, sand-dunes, cobbles, the existing partial differential equations, based on the classical
boulders, etg, and so on. The dead-zones are characterized by Fick’s law directly or indirectly, need to be revised following the
hierarchical structures that contain pollutant storage-release zonesiew finding that may mark the beginning of a wide application of
with the size ranging from flow depth to millimeter or even a fractional partial differential equations in hydraulics.
smaller scale. Pollutants captured by large-scale dead-zones are
easily and quickly released but the release processes of pollutants
trapped in the small-scale dead-zones may take a long time, causNumerical Schemes for Fractional
ing a hierarchical release of the pollutants and thus the long-tailed Advection-Dispersion Equation
dispersion process. Such a hierarchical dead-zone induced scaling
dispersion process is difficult to describe by currently available The key to solving FRADE is to properly define the fractional
models. However, fractional derivative-based differential equa- derivatives and to develop a feasible numerical scheme as the
tions are found to be particularly suited for describing the long- fractional-order derivatives are usually characterized by a long-
tailed dispersion processes observed in systems with hierarchicarange dependence and they are thus difficult to use in numerical
scaling structure$Zaslavsky 2002; Sokolov et al. 2002; Metzler computations. There are different definitions of fractional deriva-
and Klafter 2000. Consequently, to reflect the influence of het- tives. The Grawald definition and other modified definitions are
erogeneity of the medium and for generality or universality the convenient for numerical solutions. Based on thér@vrald defi-
differential orderF in this paper is allowed to be a fraction instead nition of the fractional derivatives, the value of a fractional dif-
of the integer constant of 2, leading to the following equation: ~ ferential operator acting on the functi@(x,t) is an infinite se-

aC 9C oFC ries (Oldham and Spanier 19Y4.e.

Tt T ax TR (3) ey 1 N rG-F)

Eq. (3) reduces to Eq(1) when F=2. Eq. (3) is the FRADE ax"\LLhT(=F) & T(+1)
suggested for natural streams. Owing to the importance of Param- o reh = Ax=x/N; N= positive integer; and'() = gamma func-
eter F in the dispersion processes and for the convenience Oftion
reference, parametér is termed as “Fractor” in this paper. Due .

to the heterogeneous nature of natural media faetgari . Oldham and Spanief1974 also presented the following
- 9 us nature of natural media faetoaries sig- modified Grunwald definition and stated that this definition was
nificantly from one medium to another instead of keeping the

integer constant 2, superior to Eq(4) in its convergence properties:

FCxt) 1 Ng G=F)
= lim .
Range of Variation of Fractor F axF NLthF(— F)i=o I'(j+1)

An understanding of fractoF is essential for development of a ®)
numerical method for FRADE and for application of the partial This definition calls for evaluation of at points other than the
differential equations that are derived directly using Fick's law or known C; values at grid points unlegs=0,=2,+4, ... . Itis,

in analogy with Fick’s law. As mentioned earlier, fractomay be therefore, necessary to approximate the definition of (Bj.so
physically understood as the anisotropic extent of the medium that all theC values can be evaluated using Bgvalues at grid
through which the dispersion process occurs. The smaller than 2points. The simplest way to do so is to take an integer number as
is the fractor, the more heterogeneous is the medium. For isotro-the approximation oF/2. It has been found that tHevalues are

C(x—jh,t) (4)

I:h jh
X+§ —J |t
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Table 1. Change of Fractional Binomial Coefficients with Memory Lengtnd Fractor-

Memory FractorF
lengthj 2.0 1.9 1.8 17 1.6 15 14 13 12 11 1.0
0 1 1 1 1 1 1 1 1 1 1 1
1 -2 —1.9000 —1.8000 —1.7000 —1.6000 —1.5000 —1.4000 —1.3000 —1.2000 —1.1000 -1
2 1 0.8550 0.7200 0.5950 0.4800 0.3750 0.2800 0.1950 0.1200 0.0550 0
3 0 0.0285 0.0480 0.0595 0.0640 0.0625 0.0560 0.0455 0.032 0.0165 0
4 0 0.0078 0.0144 0.0193 0.0224 0.0234 0.0224 0.0193 0.0144 0.0078 0
5 0 0.0033 0.0063 0.0089 0.0108 0.0117 0.0116 0.0104 0.0081 0.0045 0
6 0 0.0017 0.0034 0.0049 0.0061 0.0068 0.0070 0.0064 0.0051 0.0030 0
7 0 0.0010 0.0020 0.0030 0.0038 0.0044 0.0046 0.0043 0.0035 0.0021 0
8 0 0.0006 0.0013 0.0020 0.0026 0.0030 0.0032 0.0031 0.0025 0.0015 0
9 0 0.0004 0.0009 0.0014 0.0018 0.0022 0.0024 0.0023 0.0019 0.0012 0
10 0 0.0003 0.0006 0.0010 0.0014 0.0016 0.0018 0.0018 0.0015 0.0009 0
11 0 0.0002 0.0005 0.0008 0.0010 0.0013 0.0014 0.0014 0.0012 0.0007 0
13 0 0.0001 0.0003 0.0005 0.0006 0.0008 0.0009 0.0009 0.0008 0.0005 0
15 0 0.0000 0.0002 0.0003 0.0004 0.0006 0.0006 0.0007 0.0006 0.0004 0

concentrated in the range of 1.4—2.0 with 1.65 having the highest In order to construct a numerical scheme for fractional deriva-
frequency of occurrence, as shown in Fig. 2. This meanshfat tives and thereby for fractional differential equations, the two
ranges from 0.7 to 1.0 with 0.825 having the highest frequency. limit definitions of fractional derivatives in Eq§9a) and(9b) are
Consequently, a fixed integer constant 1 is assumeB/@when approximated as

determiningC at a grid point. This leads to N
N1 aFC(x,t) 1 En
aFC(x,t) i 1 3 I'(j—F) heih ToxF %FFO Wi Cy—j (10a)
T MM BT(—F) & T CXFh ) -
6 aFC(x,t) 1
| . | © e~ Y WEChy (10)
Obviously, the definition of Eq(6) is based on the Oldham defi- =0

nition of Eq. (5) and Fig. 2. o _ where superscriph=time t, and j =distancex. Egs.(10a) and
~In-analogy with the backward finite-difference expressions of (10b) will serve as the fundamental basis of the fractional finite-
integer-order derivatives, Gnwald-Letnikov gave the following gifference method. In order to facilitate numerical computation
definition of fractional derivatives by inductidifodlubny 1999 for practical application of the series in Eq0a) and(10b), it is

SFC(x.) 1 N F helpful to know the variation of the weighting coefficients in the
—F': lim _2 (_1)1( . )C(x—jh,t) 7) series with the memory lengthand with factorF. To that end,
ax N hF =0 ] coefficients in the above definitions of fractional derivatives are

calculated using Eq8) and listed in Table 1 and plotted against
| the memory lengtlj in Fig. 3 for I=sF=<2.

Both Table 1 and Fig. 3 show that the weighting coefficients
decrease rapidly whej=3. Table 1 illustrates thawv,=—F al-
ways andw, decreases from 1 to 0 whénvaries from 2 to 1. No
F F . matter what value the fractor takes on, the weighting coefficients
Wi, Wo=1, j=123... w; become very small whej=3. FractorF is greater than 1.4 in

(8) all the data sets used in this paper. The maximum coeffigieig

Test calculations indicate that the coefficientsoih Egs. (6) gqual to 0.064 .whem=3, correspondlng.IG.: 1.6, as |n.d|cated

and (7) give identical values for the sanfeandj. It should be in Table 1. This means that the contribution of a single term

noted that the right-hand side of E() is the summation oN
+1 (j=0,1, ... N) terms, whereas other definitions involixe

where the fractional binomial coefficients over j=weighting
factors, which reflect the length of the memory of the fractional
derivative and can be calculated using the following recurrence
relationships or the fast Fourier transfof@odlubny 1998

ool

terms. As the coefficients in Eq&), (6), and(7) are equivalent, ! ——F=20
these definitions can, therefore, be expressed in the same form /- R
N z 04 : j| e F=1.7
aFC(x,t) 1 = —F=16
——=1m = wrC(x—jh,t 2 L 2 3 —F=15
8XF Noo hFJZO i ( J ) @ k1%
8.1 —F=13
. ) - © — )
X (Grunwald-Letnikov definition  (9a) e F=1.1
e F=1.0
N+1 -2
aFc(x,t) = . Memory length j
T—m szo wiC(x+h—jh,t)

Fig. 3. Variation of fractional binomial coefficients with memory

X (Deng-Singh-Bengtsson definitipn (9b) length
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1.8 It is apparent from Table 1 that E¢L1b) reduces to the for-
NonGaussian curve ward finite-difference scheme and E(lla) to the backward
e NN\ T Gaussian core finite-difference scheme whe=1. As both the first-order for-
'§ 121 \,\ Fractor = 1.695 ward scheme and backward scheme have the first-order error, the
‘é’ \ two schemeg11la) and (11b) possess the same error order—the
B 09 \ first order whenF=1. When F=2, Eq. (11b) recovers the
fg \ second-order central finite-difference scheme and no correspond-
g 06 \ ing scheme can be found for E@.1a) in the integer-order finite-
© \ difference methods. The error order of the scherfiedh) and
0.3 ¢ \ (11a) can be analyzed by means of the Taylor series expansion.
0.0 . N Using the Taylor expansion and conducting some simple math-
6 9 12 15 ematical manipulations yield

Time after tracer injection (hours)

9°C(x)  C(x+h)=2C(x)+C(x=h) 4*C(x) h?

Fig. 4. Comparison between Gaussian core and non-Gaussian tail 9% h? ax*t 12 (12)
9°C(x)  C(x)—2C(x—h)+C(x—2h) 43C(x)
becomes negligible to the whole series after3. However, the x> h? x°
summation of the termg=3 may remain significant especially 54C(x) h?
when the number of the terms is large or the range is long. Such — 1 (13)
IX

a feature is called the long-range dependence or correlation of
fractional derivatives. Anyway, a distinct change of behavior of
the series takes place whee 3. In other wordsj =3 appears to

be a demarcation. To reflect the change, the series in (E6s)

and (10b) can be expressed in two parts as

Eq. (12) indicates that the scheme of Ed1b) possesses the
second-order accuracy whér=2. It is, therefore, inferred that
scheme(11b) possesses tHe-th order accuracy wheniF=<2.

It can be seen from Eq13) that the scheme of E@lla) has the
first-order accuracy whelr= 2. It is then inferred that the scheme
of Eq. (11a) possesses the first-order accuracy wheaFk2.

For the convenience of reference, the fractional finite-difference
scheme in Eq(11b) is designated as theF.3 Central Scheme,”
where “F” means that the scheme 5-th order accurate for the
fractional derivative; “3” signifies that the first three terms in the

oFC  Ch—FCh_,+w5Ch _,
AxF

axF

+FTy

[Wo=F(F-1)/2, m=1,2,3...] (11a)

0°C_Ch.y~FCRwiCH

LYFT, (m=123...)

oxF AxF series are used to approximate the main property of the whole
(11b) series in Eqs(1la) and (11b); and “-” implies that this is a
H numerical scheme for fractional derivatives. Likewise, Eda)
where

is termed as the “1.3 Backward Scheme.” After an error analysis,

m
FTi=1AX" >, whch |
j=3

m+1

the stability requirements of thHe.3 Central Scheme and the 1.3
Backward Scheme can be analyzed in conjunction with the frac-
tional advection-dispersion equatigRRADE) [Eqg. (3)]. To fa-
cilitate manipulation, the first three terms are utilized in the fol-
lowing stability analysis.

FT2:1/AXFJ23 wieh |
The first three terms of the series are called a Gaussian coreyon Neumann Stability Analysis of Fractional

because for an instantaneous initial condition the numerical solu- Numerical Schemes

tion of FRADE containing the first three terms exhibits a Gauss-

ian distribution, as indicated in Fig. 4 for the case of fradtor Stability analysis is utilized to compare the performance and to
=1.695. Except for the first three terms, the remaining terms in find the convergent conditions of the above derived fractional
the series are designated as fractional @@&il) or non-Gaussian finite-difference schemes. Although several methods, such as the
curve since they make the distribution skewed and cause a longenergy method, the von Neumann analyalso called the Fourier
tail. It should be noted that the distribution with a long tail and series method and the matrix method, are available for stability
marked by “non-Gaussian curve” in Fig. 4 is the complete nu- analysis, the von Neumann method is relatively simple to apply
merical solution of FRADE comprising both the non-Gaussian and provides considerable insight into the performance of differ-
tail part and the Gaussian core part. Actually, the contributions ent algorithms. Consequently, the von Neumann stability analysis
from the core and tail parts vary with time and distance. The is most widely used. However, this method is local and is only
farther from the source is the location, the smaller the contribu- applicable to linear equations with constant coefficients. There-
tion is from the core part and the greater the contribution is from fore, a common assumption made in the von Neumann method is
the tail part, and vice versa. However, numerical experiments that the coefficients of the difference equations vary so slowly as
reveal that both magnitude and distribution of the non-Gaussianto be considered constant in space and time. The concept behind
tail are determined by the Gaussian core. Consequently, thethe von Neumann analysis is that the finite-difference approxima-
Gaussian core is the controlling part of the series but the non-tion C}‘ on the lattice At,jAx) of the functionC(t,x) is de-
Gaussian tail is the dominant mechanism underlying the long tail composed into convolution of the independent solutions or eigen-
distribution or causing the long-range dependence of the disper-modes or harmonics, which are the normalized sine and cosine
sion processes in natural media. waves. Each sine/cosine wave is of the faifPmess et al. 1998

426 / JOURNAL OF HYDRAULIC ENGINEERING © ASCE / MAY 2004

Downloaded 08 Sep 2011 to 130.235.105.202. Redistribution subject to ASCE license or copyright. Visit http://www.ascelibrary.org



g”e”‘““x) or Cjnzgnelk(ij) (12=-1) (14)

wheren and j=step numbers irt and x, respectively;k=real
spatial wave number; arfd=complex number which depends on
the wave numbek and the finite-difference scheme. It is easily
found from Eq.(14) thatC}‘*llc?:g. Therefore, the rati§ of C
from one time step to the next is the “amplification factor.” If
|¢|<1 for all k, then the Fourier components decay as time is

advanced step by step or as they are processed by an iterative
solver, the difference scheme is stable. Because of the linear be-

havior of the Fourier series, it will suffice to consider a single
Fourier mode which is a priori generic. To find the amplification

factor &, the eigenmodes need to be inserted into the scheme. As_)\):a into Eq. (19)
the stability properties of the pure advection equation have been :

extensively investigate@Press et al. 1988 this paper only dis-

cusses the stability of the pure fractional dispersion equation

separated from Eq3), i.e.

aC aFC
ot KeoxE (15)

Detailed derivations of the stability analysis can be found in the
appendix and in Den@002.

F.3 Central Scheme for Fractional Dispersion Equation

Explicit Algorithm

Application of theF.3 Central Scheme without the tail part in
combination with the forward time scheme to E#5) results in
the explicit algorithm of the fractional dispersion equation as

_AtK
(AX)F’

m=j

ChHl=Ch+a(Ch,;—FCh+wW5Ch_)) {(x

(16)

Inserting the trial solution(14) into Eq. (16) and conducting
mathematical manipulations by using some familiar complex
number identities yields the stability bound for the expli€iB
Central Scheme

2 AtKe 2
< <
CSTrwEF O (AF T IHwL+F

(17a)
From Table 1 it is seen thavgzl in case ofF =2, resulting in
a=<1/2. It implies that

At (Ax)?
t= 2Kg

(170)

This condition(17b) has been widely used as a stability restric-
tion for the integer-order dispersion equatid®ress et al. 1988
Consequently, the inequality of E¢lL7a) is the general stability
criterion of the fractional dispersion equation. The physical inter-
pretation of the requirement of Eql7a) is that the maximum
allowable time step is, up to a numerical factor, the dispersion
time across a cell of widtAx. For example, iF=1.7, it is found
from Table 1 thatv;, =0.595. In this case, the time step should be
chosen in the range akt<0.607(Ax)/Kg. The condition in
Eq. (17a) is simple, although the process of deriving the inequal-
ity is complicated.

Implicit Algorithm
Now, consider the following implicit algorithm of E¢15) when
the F.3 Central Scheme without the tail part is used.
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Cht=Chta[MCh—

n+1 FAn+1
m+1 ch +W2Cm—l)

+(1=N)(Ch, —FCR+W5CH )] (18)

in which the weighting factok is a chosen number in the interval

[0,1]. Carrying out some complex number transforms gives the

expression of the amplification facttif as follows:
le(1+wh+F)—1]

€= B(l+wh+F)+1

(19)

Then, consider three special cases of the weighting factét)
A=0: In this case, the substitution @=aA=0 ande=a(1
recovers the amplification factor of the
explicit case. This is easily found by comparing Etf) with Eq.
(18) for A=0. (2) A=1: In this case, substitution @B=a\=«
ande=a(1-\)=0 into Eq.(19) yields

1+a(l+F+wh) 1
[+ a(l+F+wh)]? 1+a(l+F+wh)

|£] (20)

It is apparent thaltt| <1 for all « and factorF and the stability is
guaranteed under any condition. Tike3 Central Scheme is,
therefore, unconditionally stable far=1. If F=2, w,=1 leads

to |£€|=1/(1+4«a). This result is consistent with the existing one
of the integer-order dispersion equatiPress et al. 1988 (3)
A=0.5: In this case th&.3 Central Scheme corresponds to the
Crank-Nicholson method of the integer-order dispersion equation.
SubstitutingB =aA=0.5¢ ande=a(1—\)=0.5x« into Eq.(19)
yields

 10.5a(1+ F+wh)12—1] B |0.5a(1+F+wh)—1]

~ [05x(1+F+wh)+1]12  0.5a(l+F+wh)+1
(21)

It is obvious that the stability conditiofg|<1 holds for alle and

F asw} is determined byF. The F.3 Central Scheme is, there-
fore, also unconditionally stable fox=0.5. If F=2, w§=1
yields |&|=|2a—1|/(2a+1). This is the stability requirement
posed for the integer-order dispersion equatiress et al. 1998

In general, it can be easily proved that the3 Central Scheme is
unconditionally stable for 05 x=<1.0 anda=0. It follows from

the above analysis that tite3 Central Scheme recovers the cor-
responding central space scheme of the integer-order dispersion
equation wherfF=2.

&l

1.3 Backward Scheme for Fractional Diffusion
Equation

Explicit Algorithm

Application of the 1.3 Backward Scheme in conjunction with the
forward time scheme to E@15) results in another explicit algo-
rithm of the fractional diffusion equation

ChNFl=CN+q(Ch—FCN ,+w5hCh ) (m=jh) (22)

Following the similar procedures and manipulations as Rt
scheme, the amplification fact¢# can be finally expressed in a
simple form

|€|=1+a(1+wWh5+F) (23)

Eq. (23) indicates that the amplification factpi|=1 always for

all values ofa=0 andF. It means that the numerical solution
grows as it is dispersed. Consequently, the 1.3 Backward Scheme
in the explicit case is absolutely unstable and cannot be used.
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Implicit Algorithm 14 .
Now, consider the implicit case of the 1.3 Backward Scheme. In 12 ] '::"‘_’"1‘";2“1'2';@: 64, 1.80
this (k:)ase t.?[e num(far:?:al algorithm of the pure dispersion(IEs). s 10 correspond to the curves from left to right
. 5 ]
can be written as follows: g _ o Measured data
Cnm+1:Cnm+(x[)\(Cnm+l—FCner_ll-i'WgCner_lz) 5 8- Model prediction
&
FA-M(CR-FChL_ +w;Chn)] (29)
Following the similar procedures and manipulations as the im- 3
plicit algorithm of theF .3 scheme, the amplification factig can
be finally expressed as
e(1+wh+F)+1
|§| = —B (1 +Wg TF) -1 (25) Time since tracer injection (hours)
For A=0, Eq. (24) becomes the explicit expressi¢?2). In the Fig._5. Comparison bet\_/veen measured and predicted concentration
meantime, Eq.(25 recovers its counterpart Eq23). For A profiles for Monocacy River

=0.5,¢=pB=0.5¢ and|£|=1 holds always. Therefore, the am-

plification factor|&|=1 for any value ofa and F and the 1.3

Backward Scheme is absolutely unstable in the case=oi 0

<0.5. Forn=1, ¢=0 andB=«, Eq. (25 becomes the full implicit form of Eq. (18) is used and the fractional tail is
added to the equation, leading to

€l (26) —aCp i+ (1+Fa)Cprt—whaCpry

T Ja(T+wE+F) 1]
The stability of solution requirel|<1, i.e. n N
—n Fent
a(l+WE+F)—1=1 or a(1+Wi+F)—1<—-1 (27) =Ch+a X 2 wiC] (29)

nt=0 i=m+2

In Eq. (27), the second inequality is unrealistic. The first inequal- wherem=1,2,3 ... N—1 andj=i+1—m. As all the quantities

ity leads to the stability limit appearing on the right-hand side are known, E2f) may be
2 28 simplified by grouping terms as
2 N —
YT IrwitF (28) oCh L +PCH I+ Qe L =Rn (308)

Eqg. (28) shows that the 1.3 Backward Scheme is conditionally where
stable in the implicit case.

— —wF = = —
The stability analysis further demonstrates thatfh& Central O=-wza, P=1+Fa, Q=-a

Scheme is indeed more accurate and convenient than the 1.3 n N
Backward Scheme having a narrower range ofithalue. There- R=CN+a > > Wchi"‘ (300)
fore, theF.3 central scheme is suggested for the numerical solu- nt=0 i=m+2

tion of FRADE. Moreover, the results of the stability analysis also Form=1 toN— 1, Eq.(30) can be written as a tridiagonal matrix,
show that the existing stability criteria for the pure integer-order 5 system of simultaneous linear algebraic equations. Therefore,
dispersion equation are the special cases of that for the pure fracthe equations can be efficiently solved using the Thomas Algo-
tional dispersion equation. Therefore, the stability criteria derived yjthm.
in this paper are the general requirements of stability for both the 1 jjjustrate the applicability of the above-developed fractional
integer-order and the fractional-order dispersion equations. dispersion modelFDM) characterized by the FRADE and the
F.3 scheme, dye test data, measured on four reaches of the Mono-
cacy River(Nordin and Sabol 1974and the Missouri River be-
Application of the Fractional Dispersion Model to tween Sioux City, lowa, and Plattsmouth, Nebragkatsukura
Natural Rivers et al. 1970, were employed as these data have relatively high
accuracy and were used as typical evidence of the success of the
A semi-Lagrangian approacliHolly and Preissmann 1977; dead(storage zone model(Czernuszenko et al. 1998; Seo and
Karpik and Crockett 1997is one of the most popular split- Cheong 2001 Fig. 5 demonstrates comparisons between the field
operator methods and was thus used in this paper since it solve®bserved and the model predicted concentration profiles for four
the advective and diffusive terms of an advection-dispersion reaches of the Monocacy River. Although the first theoretical
equation separately by employing the most efficient method to curve on the left overestimates the values in the initial stage of
each term. In the pure advection step, the solution was found byconcentration rise, the agreement between the measurements and
first tracking back the upstream departure point along the charac-the computed curves are excellent in general. Fig. 6 shows com-
teristic line of the scalar particle and then estimating its concen- parisons between field dye test data measured on the Missouri
tration at the previous time level by interpolating the known con- River and theoretical dispersion processes simulated by the FDM.
centration values at the two computational grid nodes bracketing The four curves from the left to the right in Fig. 6 correspond to
the departure point using cubic spline interpolation. the four observation sections: Decatur Bridge, Blair Bridge, Ak-
Since the pure advection process is not subject to any stability sar-ben Bridge, and Plattsmouth Bridge. In terms of the core part
limitation on the time step it is desirable to render the pure dis- or for the main part of a concentration hill, the prediction of the
persion process in Eq15) unconditionally stable. To that end, FDM is comparable with or better than the best of the dead-zone
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Missouri River: F = 1.805, 1.723, 1.723. 1.723 The FRADE _and th_eF.3 _scheme form a new dlsper3|on_
4 1 i model, the fractional dispersion model, that captures the main
correspond to curves from left o right mechanism causing the persistence or the long tail of the disper-
3 ° Measureddata sion processes in natural media. The fractional dispersion model
Fractional dispersion model is a generalized dispersion model and thus can be easily applied
to any field where the integer-order advection-dispersion equation
is used. The predicted distribution of scalar concentration by the
fractional dispersion model matches the observations measured in

Concentration (ppb)

natural streams quite well if the values of fracterare properly
estimated.

' R ‘ Appendix: Stability Analysis
10 20 30 40 50 60 70
Time since tracer injection (hours) F.3 Central Scheme for Fractional Dispersion Equation

Fig. 6. Comparison between measured and predicted concentrationgxplicit Algorithm
profiles for Missouri River Inserting the trial solutiorf14) into Eq. (16) yields

gn+1elk(jh):(aelkh+(1_OLF)_i_OLW;efIkh)gnelk(jh) (31)

Eq. (31) leads to
models. However, the prediction of the FDM is much better than kh Fo—Ikh
that of the dead-zone model in terms of the long tail. E=ae "+ (1-aF)+awe (32)
Furthermore, the FDM has less paramef@w®) than do the  To obtain an expression fa the following familiar identities are
dead-zone models that have at least four parameters which argsefyl:
allowed to vary. In the above calculations the longitudinal disper-

sion coefficientK ¢ is determined by = (3,60(K,)%/1,609 to elfte —cosh (330)
maintain the harmony of variable units, whefg andK, carry 2

the dimensions of mif¢hour and metéfsecond, respectiveli , 10 10

can be determined using the methods proposed by Deng et al. izsine (330)
(2001, 2002. For rivers parameter fractor ranges from 1.4 to 2.0. 2l

The more heterogeneous the mediuntasthe more dead-zones 9

there are in the river the smaller than 2 is the fractér F can be 1—-cosf=2 sinz(i) (33%¢)
estimated using a moment-based method. Details of the method

will be addressed in a future study. It should be emphasized that e'"=cosf+1 sind (34a)
the contribution from the tail part increases with distance and e .

time, signifying a growing variance in the concentration profile. e "=cosb—Isind (340)

The FDM gives predictions which are much closer to the obser- Sypstitution of Eqs(34a) and (34b) with 6 =kh into Eq. (32)
vations than the existing dispersion models due to the existence ofieads to

the long-range dependence part: Non-Gaussian tail in the FDM. . F .
Consequently, the FDM fully meets the three qualitative criteria €= (coskh+1sinkh)+(1—aF)+aw;(coskh—1 sinkh)
for a sound dispersion model and the results of above compari-

— _ F I S

sons also illustrate its soundness. =(1-aF)+a(l+w;)coskh+la(l—w;)sinkh (35)
Sinceé is a complex number, it can be written as

£=|&|(cosb+1sind) (36)

Conclusions

Substituting Eq(36) into Eq. (35), and equating real and imagi-
The main contribution of the paper lies in the construction of a nary parts give two expressions f&f and6 in terms ofa andh:
new_numerif:_al aIgori_thmF.S centrgl finite-diffe_rence scheme, |§|cose=(1—aF)+a(1+w§)coskh 37)
and its stability conditions for solving the fractional advection-
dispersion equatiofFRADE). The FRADE is derived by extend- |§|sine=o¢(1—wg)sinkh (38)
ing Fick’s first law from isotropic media to heterogeneous media
and is particularly suitable for description of the highly skewed
and heavy-tailed dispersion processes observed in rivers and othef!
natural media. The FRADE is mainly characterized by parameter |§|2=[(1—aF)+a(1+wg)coskh]2+[a(1—w§)sinkh]2
fractor F acting on the dispersion term. For natural streamis

Squaring and adding Eq&7) and(38) result in the mode of the
mplification factoré:

in the range of 1.4-2.0. For<dF=2, the fractional derivatives =a1+(W5)?+(1—aF)?—2a(1—aF)(1+wh)

can be discretized into two parts: A Gaussian core consisting of

the first three terms of the series and a non-Gaussian tail com- X[2 sir?(kh/2)—1]+2w;oa2{2[2 sirf(kh/2)—1]2—1}
prised by the remaining terms of the series. With three terms

included, theF.3 scheme always performs better than the back- (39)

ward scheme 1.3 in terms of error and stability analyses. The Eq. (33c) is employed in deriving Eq(39). To meet the stability
existing stability conditions of the integer order dispersion equa- condition |¢|<1 for any value ofkh, the extreme case of
tion are found to be the special cases of the general stability sir’(khV2)=1 is considered. In this case, E®9) can be simpli-

requirements derived for the pure fractional dispersion equation. fied as
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|€]2=a2[1+ (W5)2]+(1—aF)2—2a(1—aF)(1+wh) Substituting the independent solution of EG4) into Eq. (43

yields
+2wha? (40) _
[—oane®+(1+Fak)—whare Khgntiekin
Eq. (40) can be recast into the following simpler form:
_ —\)alkh _ _
|€[2=[a(1+W5)— (1—aF)2=[a(1+W5+F)—1]? (41) =la(l=0eH [1-Fa(1-0)]
The inequality|¢|<1 implies +wha(1-N)e kM gnelkin) (44)
—l<a(l+w;+F)-1<1 (42) Simple manipulation yields

In Eq.(42), the first inequality is apparent and the second inequal-

khy(q_ F_a—lkh
ity leads to Eq(17a) in the main text. ee "+ [1-Feo]+wyee

T peM T (1+Fp)—wipe KN

(45)

Implicit Algorithm

Rearranging Eq(18) so that all o+ 1) terms are on the left-hand ~ Wheree=oa(1—\) andp=a\ are introduced. Using Eqé34a)
side and alln) terms, which are already known, are on the right- and (34b) with the replacement of =kh, Eq. (45 can be rear-
hand side ranged as

—aACIH L+ (1+Fan)Chft—whanChy  (1—¢F)+¢(1+w;)coskh+1e(1—wj)sinkh
~ (1+BF)—B(1+wh)coskh—1B(1—wh)sinkh

(46)
=a(l-N)Cp,+[1-Fa(1-N)]C]
Multiplication of both the numerator and the denominator by the
+wha(1-N\)Ch_4 (43) conjugate complex number of the denominator yields

[(1 oF)+¢(1+wh)coskh][(1+BF)—B(1+wh)coskh]— eB[(1—w})sinkh]?
[(1+BF)—B(1+wh)coskh]?+[B(1—wh)sinkh]?

[(1 oF)+ ¢o(1+w5)coskh][B(1—w5)sinkh]+[(1+BF)—B(1+w5)coskh][¢(1—w})sinkh]
[(1+BF)—B(1+w5)coskh]?+[B(1—wh)sinkh]?

(47)

Following the same procedure with the derivation of E2f), the mode of the amplification fact¢§] can be expressed as

. (1—oF)(1+BF)+(9—B+2B¢F)(1+wh)coskh—oB[1+(W5)2]—2¢pwWh(2 cog kh—1)) 2
€] (1+BF)2—2B(1+BF)(1+wh)coskh+ B[ 1+ (wh)?]+ 2B%wh(cog kh—sir? kh)

B(1—¢F)(1—w})sinkh+¢(1+BF)(1—w})sinkh 2
- (1+BF)2—2B(1+BF)(1+wh)coskh+ B[ 1+ (wh)?]+ 28w} (cog kh—sir? kh)

={((1-¢F)(1+BF)— (¢ —B+2B¢F)(1+wh)(1—coskh—1)—oB[1+(Wh)?]
—2¢BW5[2(1—coskh—1)2—11)/((1+ BF)?+2B(1+BF)(1+wh)(1—coskh—1)+ B 1+ (wh)?]
+2B2w5[2(1—coskh—1)2—11)}2

[ (B+¢)(1—wh)sinkh ]2

* (1+BF)2+2B(1+BF)(1+wh)(1—coskh—1)+ B 1+ (w5)?]+2B%w5[2(1—coskh—1)2—1] (48)

Using EQ.(33c) and notingd =kh lead to

|E[2={((1=@F)(1+BF)—(¢—B+2B¢F)(1+w5)[2 sirf(kh/2) — 1]~ @R[ 1+ (W5)?]
—2¢BW5H{2[2 sirf(kh/2) — 112— 1})/{(1+ BF)?+ 2B (1+ BF)(1+w5)[ 2 sirf(kh/2) — 1]+ B[ 1+ (wh)?]
+2B2wh{2[ 2 sirf(kh/2)— 1]2—1})}2

(B+¢)(1—w5)sinkh 2
* (1+BF)2+2B(1+BF)(1+wh)[2 sirf(kh/2) — 1]+ B[ 1+ (wh)?]+ 2B 2wh{2[ 2 sirf(kh/2) — 1]2— 1}

(49)
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To ensure the stability requiremef|<1 for all values ofkh, the

worst case of sftkh/2)=1 is considered as all other values of

sirf(kh/2) lead to smalleft| values. The condition of sktkh/2)=1, sinkh)=0 leads to the disappearance of the second part of4=y.

Thus, Eq.(49) can be simplified as

(9= B+2BoF)(1+W))+¢B(1+W5)>—(1-¢F)(1+BF)|? [[¢(1+w5+F)—1][1+p(1+w5+F)]|

|€I?=

The simplest form ofg| is expressior(19) in the main text.

Notation

The following symbols are used in this paper:

C = passive scalafe.g., concentration of pollutants
F = fractor (fractional differential order of the
dispersion term
h = distance step€Ax);
J = flux of dispersion;
K = dispersion coefficient;
O,P,Q = lower, main, and upper diagonals of the coefficient
matrix;
R = right-hand side of the linear algebraic equation
system;
t = time;
U = flow velocity;
WJF = series coefficient;
x = distance along the flow direction;
o,B,¢ = numerical constants;
At = time step;
Ax = distance step;
N = weighting factor; and
¢ = amplification factor.
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