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ABSTRACT 

 

Density functional theory results of the electronic structure of an iridium sulfide, 

Ir2S2(PPh3)4 (2), are presented here, along with a discussion of the reaction mechanism 

of dihydrogen activation on this sulfide. This Ir (II) sulfide shows unusual reactivity 

binding two equivalents of H2. The first reaction was believed to be a homolytic 

cleavage of one H2, between the two iridium centers, which would produce the dihydride 

complex Ir2(PPh3)2H2(µ-S)2 (3), while the second-product was believed to arise from 

heterolytic cleavage by (3) of a second H2, between an iridium and a bridging-sulfur 

atom, which would produce Ir2(µ-S)(µ-SH)(µ-H)H2(PPh3)4 (4). Previously published 

crystal structures on (2) and (3) suggest that the there is a strong metal-metal bond in the 

Ir(II) d7 dimer, (2), and that this bond is surprisingly preserved in the first H2 cleavage 

product, (3). We investigated the activation of H2 by this Ir(II) complex, and the 

corresponding model complex Ir2(µ-S)2(PH3)4, in order to determine the details of this 

pathway. Our proposed mechanism suggests that the activation of the first equivalent of 

hydrogen can be either heterolytic or hemolytic, leading to a species with a bridging 

hydride Ir2H(µ-S)2(µ-H)(PPh3)4 (3-brid) in which the metal-metal bond is preserved, 

while the second activation appears to be a heterolytic activation, which produces the 

final product (4).  
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MO Molecular Orbitals 

HF Hartree-Fock 

BSSE Basis Set Superposition Error 

CI Configuration Interaction 

CIS Configuration Interaction Singles 

MCSCF Multi Configuration Self-Consistent Field 

PT Perturbation Theory 

CC Coupled Cluster 

CCSD(T) Coupled Cluster Singles Doubles and perturbative Triples   
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1 INTRODUCTION 

 

Hydrogen is the lightest and the most abundant element in the universe. In our 

environment, hydrogen atoms exist in chemical compounds such as hydrocarbons and 

water, rather than in its elemental form. Hydrogen gas can be produced commercially by 

many different methods, such as electrolysis of water, gasification of coal, and steam 

reformatting of natural gas1. Hydrogen gas is utilized in industry, mainly for 

hydrogenation reactions (reaction between molecular hydrogen H2 and another 

compound or element, usually in the presence of a catalyst). Recently, though, it has also 

been consider a secondary energy carrier that can be developed in tandem with 

electricity in order to get reliable and clean energy services2.  

 

1.1. Hydrogen Activation 

 

The H2 molecule is not very reactive under ambient conditions, as the H-H bond is one 

of the strongest single bonds with a bond energy of (436 kJ/mol)3. Comparing this to 

other H-X bonds (Table 1.1) we can see that the H-H bond is among the strongest single 

bonds4. We can therefore see that there will be little or no thermodynamic driving force 

for the cleavage of the H-H bond, since most new H-X bonds generated will be weaker 

than the original H-H bond itself.  
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Table 1.1 Bond Dissociation Energies for H-X Bonds 

Bond Type Average Bond Dissociation Energy (kcal/mol) 

H-F 135(1) 

H-O 109.60(4) 

H-H 103.25(1) 

H-Cl 102.3(1) 

H-C 98.3(8) 

H-N 92(2) 

Error in last digit is given parenthetically 

 

In addition, hydrogen molecule is non-polar and a very poor acid. The polarity of the 

reacting species can often enhance the rate of a chemical reaction. The fact that H2 is 

non-polar makes it a poor target for attack from either electrophiles or nucleophiles, and 

this results in large activation energies for H2. Even in cases when direct reaction with 

H2 is thermodynamically feasible, the rates of reactions involving H2 can be extremely 

slow.  

 

Thus, the controlled   splitting this molecule into two hydrogen atoms (or a hydride and a 

proton) usually requires the assistance of efficient catalysts. In industrial processes, 

metal-based catalysts are used to activate the H-H bond, under high-temperature and 

high-pressure conditions. For example, platinum catalysts are used as catalysts of fuel 

cells, however platinum is a very expensive metal, and has limited deposits. The main 

advantage to the oxidation of dihydrogen, either via combustion, or electrochemically, is 



 

 3 

that it leads only to the production of water. H2 could be electrochemically generated via 

hydroelectric, solar and wind power, stored, and then potentially be burned to produce 

thermal or electrical power. There are numerous industrial reactions such as 

hydroformylation and hydrogenation that utilize dihydrogen gas as atom source or 

reducing agent. Understanding and controlling the activation of dihydrogen could 

potentially help us control and optimize the reactions. Even a small improvement in the 

efficiency of these reactions will equate significantly lower cost for the whole process. 

This makes the search of new, high efficient H2-activating catalysts with high efficiency 

the focus of many ongoing research projects. 

 

At this point we should consider the fact that the frontier molecular orbitals (MOs) of H2 

do not permit most direct concerted reactions between with other non-metal elements, 

and result in high activation energies. In frontier molecular orbital theory5, when the 

symmetry of the HOMO of one reactant does not match the symmetry of the LUMO 

reactant (and vice versa) the activation energy is predicted to be high. The frontier MOs 

of H2 are the H-H bonding HOMO and the H-H antibonding LUMO. In most cases the 

HOMO of the alkene, for example ethylene is not a match for the LUMO of dihydrogen 

and vice-versa. Therefore, this direct interaction between H2 and C2H4 is expected to 

have a large activation barrier (Figure 1.1). 
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Figure 1.1  Orbital interactions between H2 and C2H4. 

The frontier molecular orbitals of H2 and C2H4 do not have the 
appropriate shape for a direct, concerted reaction. 

 

 

Overall, we can summarize that the dihydrogen molecule is thermodynamically a 

powerful two-electron reductant6 but it’s kinetically impotent due to the high H-H bond 

strength; ~104 kcal/mol.  

 

Up to this point, we have discussed how difficult it is for a non-metal element to form a 

direct bond with dihydrogen. However metal centers react directly with H2 in a 

concerted, direct way. The reason for this is the existence of low-lying d orbitals of the 

metals. According to this picture (Figure 1.2), H2 donates a pair of electrons on the σ 

bonding orbital to the empty d orbital of the metal atom and the metal atom back-donates 

nonbonding d electrons to the antibonding orbital (σ*) of H2, weakening the H-H bond. 

 

 

H2 C2H4

Empty H2 orbital Empty C2H4 orbital Filled H2 orbital Filled C2H4 orbital

H2 C2H4
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Figure 1.2  Orbital representation for H2 activation by transition metal catalysts. 
 

 

The low activation barrier of this type of direct reactions is due to the fact that the 

symmetry of the HOMO of H2 matches the symmetry of the LUMO of the metal center. 

In addition a filled orbital of the metal center matches the symmetry of the LUMO of H2 

(Figure 1.3). The transition state for H2 binding to the metal center is a synergistic flow 

of electron density from dihydrogen to the metal center and back. A low energy 

transition state is therefore expected for this reaction7.  
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Figure 1.3  Addition of H2 to the ML5 fragment. 
 

 

H2 activation by transition metal compounds has been extensively studied both 

experimentally8-14 and theoretically15-22 over the last decades, and we now have a good 

understanding of dihydrogen activation by mononuclear transition-metal complexes. 

However, mechanistic studies of dihydrogen activation by multimetallic systems, which 

are known to exhibit striking reactivity due to cooperative functions of multinuclear 

metal centers, still remain rather unexplored23-37. The cleavage of H2 at transition metal 

complexes usually occurs via two mechanisms, homolytic38 or heterolytic39 (Figure 1.4).  

 

H2 ML5

Empty H2 orbital Filled ML5 orbital

Filled H2 orbital Empty ML5 orbital
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Figure 1.4  Hydrogen activation schemes.  
Schemes a and b depict different oxidative addition paths and c 
shows two possible heterolytic hydrogen activation paths. 

 

 

The homolytic cleavage involves oxidative addition at electron-rich transition metals, 

usually in low oxidation states, leading to two hydrides bound to the metal. Heterolytic 

activation is often associated with metals in higher oxidation state, and occurs with no 

formal change in the metal’s oxidation state, giving rise to a hydride (H-, attached to the 

metal), and proton (H+, attached to a Lewis base). Both reactions may involve a 

dihydrogen complex as an intermediate.  
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 Density functional theory, along with localized molecular orbital energy decomposition 

analysis calculations were used in order to predict what determines the dihydrogen 

activation transition state geometries and reaction pathways. Those calculations 

revealled that the extend to which H2 is activated in the transition state geometry 

depends only in back-bonding interactions and not forward-bonding orbital interactions, 

regardless of the mechanism and the nature of the metal (electrophile, ambiphile or 

nucleophile) towards H2 (Figure 1.5)40. 

 

 

 

 

 

 

 

 

 

Figure 1.5 Transition state geometries of H2 addition.  
Transition state geometries that correspond to different range of H-H 
bond lengths. 
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2 THEORETICAL METHODS 

 

In the context of classical mechanics we use Newton’s equation of motion in order to 

predict the future state of a system. The same general idea applies on quantum 

mechanics. We are trying to predict the future state of a system, based on the knowledge 

of its present state. Therefore we need an equation that can describe this temporal 

evolution in a quantum system of microscopic dimensions. In 1962, Erwin Schrödinger 

introduced the famous Schrödinger Equation that is one of the main tools of quantum 

mechanics. In the standard model, a wavefunction is the most complete and accurate 

description that can be given to a physical system.  

 

2.1. Schrödinger’s Equation 

 

There are two forms of the Schrödinger’s equation, the time dependent one, and the time 

independent one. In its most general form it can be written as 

 

        (eq. 2.1)  

 

where is the Hamiltonian41 operator acting on the wavefunction , that 

describes the present state if the system. In many cases, the potential energy that is 

included in the Hamiltonian is time independent –something common in chemical 

 
i ∂
∂t

Ψ(r ,t) = ĤΨ(r ,t)

Ĥ  Ψ(
r ,t)
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systems- then the equation takes the form of a standing wave, and thus it’s common 

name, wave equation.  

 

The wavefunction itself needs to meet some requirements: it needs to be continuous, 

single-valued, differentiable, and quadratically integrable and anti-symmetric42 since it 

describes fermions. In addition, its first derivative needs to be continuous as well. In 

order to give a physical meaning to the wavefunction we need to examine the following 

quantity  

       
(eq. 2.2) 

 

 

which is the probability density, that describes the probability of the system to exist in 

space  at the moment t (Born interpretation43).  

 

In the case where the are no external forces acting on the system, the potential energy of 

the system is time independent, and therefore it only depends on the position r.  

 

A way of solving this equation is to separate variables: we can express the wavefunction 

as a product of a spatial function and a time function, and then perform the appropriate 

substitutions:  

 

 
Ψ(r ,t) Ψ(r ,t) = Ψ(r ,t) 2 dr

allspace
∫

x, x + dx[ ]
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(eq. 2.3) 

(eq. 2.4) 

(eq. 2.5) 

(eq. 2.6) 

 

We are finally asked to solve the time independent equation, in other words to determine 

the spatial part of the function. As we already mentioned, the physical meaning of the 

wavefunction is reflected through the quantity . 

 

We notice that this probability density does not depend on time, and is constant through 

time evolution of the system. Wavefunctions of this form, are called standing 

wavefunctions and the quantity describes the phase of the wavefunction. All 

systems where the potential energy is time independent are described by stationary 

wavefunctions. 

 

 

 

 

 

 

 

Ψ 2

 e
− iEt


Ψ(r, t) =ψ (r )Χ(t)

− 
2

2m
ψ (r )+V (r )ψ (r ) = Eψ (r )

i ∂Χ(t)
∂t

= EΧ(t)

Χ(t) = C ⋅e
−iEt
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2.2. Born-Oppenheimer Approximation 

 

It is known for many years, that the mass difference between an electron and a proton is 

huge (  and ). A proton is approximately 1827 

times heavier that an electron. As a result, as the nuclei move, the electrons almost 

instantaneously adjust their positions, due to their almost negligible mass, comparing to 

that of the nuclei. This gives us the opportunity to approximate the following: The nuclei 

can be considered to be fixed in space, and the electrons can be considered to move due 

to the static potential created by the frozen nuclei. This approximation is called Born-

Oppenheimer approximation. In the Hamiltonian of the system     

 (eq. 2.7) 

 

the kinetic energy of the nuclei can be set equal to zero since the nuclei are frozen, 

         (eq. 2.8) 

 

and the nuclear-nuclear repulsion term  

         (eq. 2.9) 

me = 0.00054897amu mp = 1.0072766amu

 

2

2me

∇e
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∑ − 2

2mn
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2 +
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∑ k e
2

rij
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i=1

n
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− k zae

2
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∑
a=1

N

∑
b>a
∑

 

2

2mn
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2 = 0

a=1

N

∑
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2
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∑
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∑
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can be considered a  constant44 that will be added later (with a discrete calculation) to the 

calculated, based on the electronic Hamiltonian energy, in order to improve the accuracy 

of the calculation.  

 

The Born-Oppeinheimer approximation is an essential step for solving the Schrödinger’s 

equation due to the lack of an analytic solution for all cases other than the hydrogen and 

the hydrogen-like atoms. From now on the term Hamiltonian will refer to the electronic 

Hamiltonian of the system. 

 

 

2.3. Variational Principle 

 

The variational principle states that the energy calculated using any well-behaved trial 

wavefunction, will always be greater than the exact energy of the system. 

 
         

(eq. 2.10) 

 

In other words, the energy that we compute using an approximate wavefunction can only 

be an upper barrier to the true energy. In this context, the variational principle provides a 

criterion for evaluating wavefunctions. When we compare two trial wavefunctions, the 

one that produces the lower energy, provides a better result, and therefore is a better 

approximation. In most cases, the initial trial wavefunction is constructed using a linear 

Φ Η̂Φ
Φ Φ

≥ E0
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combination of two or more known functions, and the “best” wavefunction (that is still 

not exact) is found by systematically minimizing the energy, and changing the 

coefficients of the linear combination accordingly.  

 

 

2.4. Hartree-Fock Formulation 

 

The Hartree-Fock (HF) approximation is probably the most common one, when in 

comes to solving many-body problems in quantum mechanics, such as those 

encountered in electronic structure calculations. The significance of this method is even 

greater since it is the first step in higher-level calculations.  

 

The factor that causes trouble in every calculation of electronic structure is the presence 

of the interaction cross-term (third term) in the electronic Hamiltonian of our system: 

        
(eq. 2.11)  

 

In the HF approach, this term is treated in a mean way: instead of the individual 

interaction between each electron, a mean interaction between each electron and the 

average potential created by the rest of the electrons is used.  

This can be seen in the HF equations,  

          (eq. 2.12)  

 
Ĥ = − 2

2me

∇e
2

i=1

n

∑ − k zae
2

riaa=1

N

∑
i=1

n

∑ + k e
2

riji=1

n

∑
j>i
∑

fϕa (1) = εaϕa (1)
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where is the spin-orbital energy, and is the Fock operator. 

        (eq. 2.13)  

 

In equation 2.4.3  is the core Hamiltonian for electron 1, and the sum is over all 

spinorbitals . 

 

 and are the Coulomb and exchange operators that are defined as 

     (eq. 2.14) 

 

and  

     (eq. 2.15) 

 

where  

         
(eq. 2.16)

 

 

The Coulomb and exchange operators are defined in terms of spin-orbitals, and the 

coulomb operator accounts for the Coulombic repulsion between electrons, while the 

exchange operator represents the modification of the energy due to the effects of spin 

εa f

f = h + Ju(2)−Ku(2){ }
u
∑

h

u = a,b,..., z

Ju Ku

Ju(2)ϕa (1) = j0 ϕ *
u(2)

1
r12

ϕu(2)dx2∫
⎧
⎨
⎩

⎫
⎬
⎭
ϕa (1)

Ku(2)ϕa (1) = j0 ϕ *
u(2)

1
r12

ϕa (2)dx2∫
⎧
⎨
⎩

⎫
⎬
⎭
ϕu(1)

j0 =
e2

4πε0
.
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correlation. Therefore, the sum in equation 2.4.3 represents the average potential energy 

of electron 1 due to the presence of the other electrons.  

 

Every spin orbital is the result obtained by solving a HF equation with a corresponding 

Fock operator. However, the Fock operator depends on the spinorbitals45-51 of all 

electrons, so, in a way, we require the solution to the equation before hand.  

 

These types of problems are solved using a self-consistent field approach (SCF). In an 

SCF approach, we start from a trial set of spinorbitals, which are used to form the Fock 

operator, solve HF equations and then obtain new spin orbitals and so on. The cycle of 

calculation and reformulation is repeated until a convergence criterion is satisfied.  

 

 

2.5. Basis Sets 

 

In the vast majority of systems, excluding small highly symmetric systems, all 

calculations use a basis set expansion to express the unknown MOs in terms of a set of 

known functions. There are many different types of basis functions that can be used, 

such as exponential, Gaussian, polynomial and many more, however, the basis set that 

one selects needs to fulfill some requirements. First of all, the basis set used should have 

a behavior that agrees with the physics of the problem, ensuring most of the times the 

convergence of the calculation as we add more functions. In addition, the chosen 

n −1
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functions should make calculating all required integrals easy, reducing the total time 

required for the calculation.  

 

There are two main types of basis sets that are usually used. The first choice of basis 

functions is the Slater-type orbitals (STOs) that are exact solutions51 for the orbitals of a 

hydrogen-like atom. STOs are constructed as follows. An orbital with the quantum 

numbers ,  and , that belongs to a nucleus of an atom of atomic number Z can be 

written as  

.     (eq. 2.17) 

 

In this expression, N is the normalization constant, is a spherical harmonic and  

.           (eq. 2.18) 

 

is the effective nuclear charge, and  is the effective nuclear quantum number.  

 scales the principal quantum number , to account for the shielding of the nuclear 

charge by the electrons.  

 

An accurate basis set of STOs will need to consist of a large number of STOs with a 

large number of permitted quantum numbers and a large number of orbital exponents ζ 

52-55. The variational principle is employed, in order to determine what the best values of 

ζ are. STO basis functions for atoms are centered on the atomic nucleus, and for 

n l ml

ψ nlml
(r,θ ,ϕ ) = Νrneff −1e−Zeff ρ /neffYlml

(θ ,ϕ )

Ylml

ρ = r
a0

Zeff

neff

neff n
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polyatomic species are centered on each of the atoms. There is no analytical solution 

available for the general four-index integral when the basis functions are STOs. Such 

interals can only be solved by numerical methods, and that limits their utility in 

molecular systems of significant size. High quality STOs however, have been developed 

and are used for atomic and diatomic calculations.  

 

The problem arising from the impractical compute of two-electron integrals, was 

primarily solved by using a new type of basis functions called Gaussian-type orbitals56 

(GTOs). These new basis functions played a very important role in making ab initio 

calculations computationally feasible. Cartesian Gaussians are functions of the general 

form of 

    (eq. 2.19) 

 

where  are the Cartesian coordinates of the center of the Cartesian function at 

;  are the Cartesian coordinates of an electron at . In addition,  is a 

positive exponent, and are non-negative integers. Different values of define 

different types of Gaussians, for example if  we are dealing with an s-type 

Gaussian, if we have a p-type Gaussian and if  we have a d-type 

Gaussian.  

θijk (r1 − rc ) = x1 − xc( )i y1 − yc( ) j z1 − zc( )k e− x r1−rc 2

(xc , yc , zc )

rc (x1, y1, z1) r1 a

i, j,k i, j,k

i + j + k = 0

i + j + k = 1 i + j + k = 2
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The main advantage of Gaussians is that any product of two Gaussians at different 

centers is equivalent to a single Gaussian function centered at a point between the two 

centers57 (Figure 2.1). 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.1 Gaussian type orbitals (GTOs) – product.  
The product of two Gaussians (G1 and G2) is itself a Gaussian (G1G2) 
centered between the two original functions. In this figure, the 
amplitude of the product has been multiplied by 100, for illustrative 
purposes (reprinted with permission from Ref. 57). 
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Therefore two-electron integral on three and four different atomic centers can be 

represented by integrals over two different centers, which are much easier to compute.  

There is however a main disadvantage of GTOs, and that is the lack of cusp. A 1s atomic 

orbital has a cusp at the atomic nucleus, which is present at the n-1 STO but not at the 

GTO (Figure 2.2). 

 

 

 

 

  

  

  

  

 

 

 

Figure 2.2  Gaussian type orbitals (GTOs) – cusp.  
A 1s-orbital is an exponential function, so there is a cusp at the 
nucleus. A GTO does not have a cusp at the nucleus (reprinted with 
permission from Ref. 57). 
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Therefore, since GTOs provide a poorer orbital representation we need a larger basis, in 

order to achieve comparable accuracy with that obtained using GTOs. To alleviate this 

lack of cusp, we group GTOs together to form the so-called contracted Gaussian 

functions57. Each contracted Gaussian is a linear combination of the original or primitive 

Gaussian functions, centered on the same atomic nucleus. The replacement of primitive 

Gaussians by contracted ones reduces the unknown coefficients that need to be 

calculated by a HF scheme, making the calculation significantly faster.  

 

The simplest type of basis set is called a minimal basis set. A minimal basis set includes 

one function for each representing orbital of elementary valence theory. Although 

possible, a minimal basis set would result in energies and wavefunctions that are far 

away from the HF limit. One can therefore add more functions to each atom, in order to 

significantly improve the calculated energies. This way we get a double-zeta basis set, in 

which each basis function in the minimal basis set is replaced by two basis functions, 

triple-zeta and so on. Finally, one can use a split-valence basis set as a compromise 

between an inadequate minimal basis set and the computationally demanding double and 

triple basis set. In this scheme valence atomic orbitals are represented by two basis 

functions, in the case of a double-zeta basis set- and each inner-shell orbital is 

represented by only one function. 

 

In addition, one can add extra functions in order to have a better orbital representation. 

Diffuse functions are added in order to help describe the “tail” portion of the atomic 
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orbital, which are distant from the atomic nuclei. Usually, diffuse functions are added to 

light atoms and anions. 

Further improvement of basis functions is achieved by adding d-orbitals to all heavy 

atoms. For typical organic compounds, these are not used in bond formation, as are the  

d-orbitals of transition metals. These d-orbitals are used to allow a shift of the center of 

an orbital away from the position of the nucleus. For example a p-orbital on a carbon can 

be polarized, by mixing it into a d-orbital of lower symmetry (Figure 2.3). 

 

 

 

 

 

 

Figure 2.3  Polarization of a p-orbital by mixing with a d-function. 

 

 

The selection and completeness of basis sets is very important since it gives rise to an 

error in the calculated energy, called Basis Set Superposition Error (BSSE). BSSE can 

be particularly important in cases of weakly bound systems. If we consider a dimer, then 

as the atoms of interacting molecules approach one another, their basis set overlap. As 

the two monomers approach each other, the dimer can be artificially stabilized as one 

monomer that utilized the extra basis functions from the other monomer. This 

+

p-orbital d-orbital polarized p-orbital
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inconsistent treatment of the basis set of each monomer can be eliminated using the 

counterpoise correction59, in which we calculate the amount by which one monomer is 

artificially stabilized by the extra basis functions from the other monomer. For example, 

if we consider the dimer , the interaction energy is computed as  

.      (eq. 2.20) 

 

We can estimate the amount that each monomer is stabilized as 

        (eq. 2.21) 

 

and  

       (eq. 2.22) 

 

The corrected interaction energy can then be computed as 

.     (eq. 2.23) 

 

Different methods can overestimate or underestimate the BSSE, and therefore in most 

cases it needs to be evaluated. Unfortunately, this would lead to  computations for a 

system containing atoms, and this is not always computationally feasible. 
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2.6. Correlation Energy and Post Hartree-Fock Methods 

 

So far we have discussed the basic method of quantum mechanics, the Hartree-Fock 

method. HF theory only accounts for the average electron-electron interactions, and 

consequently neglects the correlation between electrons. In a sufficiently large basis set, 

the HF wavefunction accounts for ~99% of the total energy, but the remaining ~1% is 

often very important for the description of chemical phenomena. Solving the HF 

equations with an infinite basis set provides an energy, which is defined as the HF limit. 

The energy difference between this HF limit and the exact, non-relativistic energy is 

called the electron correlation energy, and it corresponds to the motion of the electrons 

being correlated.  

 

There are two main types of electron correlation, dynamical and non-dynamical (or 

static). The dynamical correlation includes the concept of electrons avoiding each other. 

This type of correlation is, for example, the main part of the electron correlation for the 

He atom, in which two electrons avoid each other, while occupying the same orbital. 

There is, however, another type of correlation, the non-dynamical, which reflects the 

inadequacy of a single reference in describing a given molecular state. This inadequacy 

is due to nearly degenerate states, or electrons with partially filled shells. Beryllium atom 

can be a system where non-dynamical correlation dominates, since the two different 

electronic configurations (1s2 2s2 and 1s2 2p2) lie very close in energy. The two different 

types of correlation can also be explored by examining the hydrogen atom. If we pull the 
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molecule apart, we would expect that they electrons should not need to avoid each other 

as much, and the magnitude of correlation energy should decrease. In fact, the opposite 

is true, since the non-dynamical correlation is the dominating contribution. In contrast, 

when we examine short intermolecular distances the correlation that dominates is the 

dynamical term; in fact if we were to ignore electron repulsions, the electrons would stay 

in a bound state, like a He atom.  

 

The HF method uses the variational principle in order to determine the best (the one with 

the lowest energy) single-determinant trial wavefunction. In order to improve the HF 

result and account for electron correlation, we need to start from a trial wavefunction 

that includes more than one determinant. Multi-determinant methods are much more 

computationally expensive, but can generate results that improve systematically, and can 

approach the exact solution of the Schrödinger’s equation.  

 

A generic multi-determinant wavefunction can be written as a linear combination of 

determinants,  

.        (eq. 2.24) 

 

In most cases  is close to 1, and this is the reason why the Hartree-Fock method that 

accounts for the principle configuration of the system accounts for ~99% of the energy 

of the system. Different electron correlation methods, calculate the coefficients in front 

of other determinants in different ways.  

Ψ = a0ΦHF + aiΦi
i=1
∑

a0
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The CI method, which is based in the variational principle, is somewhat analogous to the 

HF method. The trial wavefunction is written as linear combination of determinants with 

the expansion coefficients being determined by minimizing the total energy of the 

system. The MOs that are used for building the excited Slater determinants60-61 are taken 

from a previous HF calculation. Full CI calculations that include all possible excitations 

are unfeasible for all but very small systems. However full CI calculations are used in 

method development, since they provide the best results for any given basis sets. CI 

methods can be truncated to include certain levels of excitations relative to the HF 

configuration, for example single (S), double (D), triple (T) etc. Truncated CIS, does not 

give any improvement over HF calculations, since all matrix elements between the HF 

wavefunction and singly excited determinants are zero. Therefore, in order to include 

electron correlation we must go beyond this CIS level of theory to at least CISD.  

 

The Multi-Configuration Self-Consistent Field method (MCSCF) is another popular 

method that accounts for electron correlation. MCSCF method can be considered a 

variation of CI, where not only are the coefficients in front of the determinants 

optimized, but also the MOs used for constructing the determinants are optimized. 

MCSCF methods are rarely used for calculating large fractions of the correlation energy. 

It is more efficient to include additional determinants and keep the MOs fixed (which is 

the CI method that was previously discussed). In most cases, single determinant HF 

wavefunctions give qualitatively correct description of the electron structure, except a 
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few cases where the ground state of the system consists of many configurations (such as 

Beryllium atom). 

 

Although CI provides a systematic way to improve the Hartree-Fock energies, it is not a 

size-consistent method. If  and  are two non-interacting systems with  the 

calculated energy of system  and  the calculated energy of system , then a 

size consistent method will evaluate the energy of the supersystem  to be equal to 

the sum of independent energies. In other words,  

.       (eq. 2.25)  

 

Size-consistency is a very important property of electronic structure methods, especially 

in order to obtain correctly behaving dissociation curves. Although CI is a variational 

method, only the full CI is size consistent. However, in most cases we are using 

truncated versions of this method, due to the size of the system, which is not size 

consistent.  

 

Perturbation theory62-64 (PT) provides an alternative solution to finding the correlation 

energy. Perturbation theory partitions the Hamiltonian of the system into two parts, a 

known part and a perturbation.  

        (eq. 2.26)  

 

A B E(A)

A E(B) B

A − B

E(A − B) = E(A)+ E(B)

Ĥ = Ĥ0 + λĤ1
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Unfortunately, although perturbative methods are size consistent, they are not 

variational, meaning that the calculated energies are in many cases upper bounds to the 

exact energy of the system. In electronic structure calculations, the Møller-Plesset 

perturbation theory65 is commonly used. The MP approach takes  to be the sum of 

the one-electron Fock operator 

         (eq. 2.27) 

 

where n is the number of basis functions, and  the fock operator.  

 

The perturbed part of the wavefunction,  is  

      (eq. 2.28) 

 

In order to apply perturbation theory and calculate the correlation energy, the 

unperturbed wavefunction must be selected. This unperturbed, zeroth-order wave 

function is the HF determinant, and the zeroth-order energy is the sum of MO energies. 

To include electron correlation we need to go at least to the second order MP2, since the 

energy up to the first order, MP1, is exactly the same as the HF energy. While 

developing this theory, we assume that the solutions to the unperturbed solutions form a 

complete set, which would require an infinite number of functions that of course is not 

computationally feasible. When we employ a finite basis set, we can only generate a 
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Limiting value

Property

HF

MP2

MP3

MP4

finite number of excited determinants. Therefore, this expansion of the many-electron 

wavefunction is truncated. In practice only low orders of perturbation theory are carried 

out, and in many cases the results of the HF and the MP2 calculations differ dramatically 

(Figure 2.4). MP2 usually overestimates the correlation energy, but often provides a 

better answer than MP3, especially in cases where a medium-sized basis set is used. 

Finally, in cases where the system has substantial multi-reference character, a 

perturbation expansion based on a single determinant will converge poorly. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.4 Oscillating behavior of results obtained with the MP method. 
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Last but not least, the last popular method that accounts for electron correlation is the 

Coupled Cluster method. The idea behind the CC method is to include all corrections of 

a given type to an infinite order*. The operator is defined, and used to relate the exact 

electronic wavefunction to the HF wavefunction through , and the 

exponential operator  is defined as  

.        (eq. 2.29) 

 

When acts on  we get a linear combination of Slater determinants, where electrons 

from occupied spinorbitals have been excited to virtual ones. The  operator generates 

all excited Slater determinants, upon acting on the HF wavefunction:  

         (eq. 2.30) 

 

or  

.         (eq. 2.31) 

 

This way we generate singly or doubly -connected in this case-  excited states.  

By comparing the CC wavefunction with the CI one, we can see that the CC 

wavefunction contains additional terms arising from products of excitations. Up to this 

point, this method has been exact, in the sense that all cluster operators up to  are 
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included in and therefore all possible excited determinants are generated and the CC 

wavefunction is equivalent to the full CI wavefunction. Of course, in the same way that 

is inefficient to do a full CI calculation, in most cases the CC calculations are truncated. 

When we truncate the operator, some of the terms in the amplitude equations become 

zero and then the energy calculated becomes approximate. Of course we can improve the 

accuracy by including more terms in the operator. In most cases we include single 

and double excited states, and an estimate to the contribution of the connected triples, 

which is calculated non-iteratively using the MP methods. This method, denoted 

CCSD(T) is considered to be the “Gold Standard” of Quantum Mechanics, since it 

provides great results for a large variety of systems.  

 

Overall, for typical equilibrium structures, the HF level of theory is sufficient to predict 

bond length that are slightly short. MP2 is considered an excellent level for geometry 

optimizations of minima. However this is not the case for transition state (TS) structures, 

where the accurate description of correlation usually requires correlation above the MP2 

level. Considering the calculated energies, MP2 can again be considered a very efficient 

level of theory. However, the generally robust nature of MP2 does not work on TS 

calculations we need to use higher level of theory. Usually good agreement with 

experimental data and convergence with respect to treatment of electron correlation are 

the most used tools when evaluating different theories. We can roughly order theory 

levels as HF < MP2 ~ MP3 ~ CCD < CISD < CCSD < MP4 < CCSD(T). Of course, the 

selection of basis set, the nature of the system, and the scaling behavior of the various 

T̂

T̂
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levels of theory are parameters that need to be considered in order to decide what is the 

appropriate level of theory for each individual calculation. 

 

2.7 Density Functional Theory 

 

All the methods described above, called ab initio methods, start with solving the HF 

equations in order to find spinorbitals that can be then used to construct configuration 

state functions. As we already mentioned although these methods are powerful and 

accurate, they can only employed in a limited number of systems. The computational 

difficulty of performing accurate calculations with large basis sets on molecules 

containing many atoms, especially heavy transition metals, is the biggest problem 

regarding these methods. An alternative to these methods is density functional theory 

(DFT). DFT has become one of the most popular methods nowadays, since it does 

account for electron correlation, while being less demanding computationally. Therefore, 

it can be used in large systems that contain many atoms and electrons. 

 

DFT is based on the concept of electron probability density. There are two ingeniously 

simple theorems66 stated and proven by Hohenberg and Kohn in 1964. The first one 

states, that or any system of interacting particles in an external potential, the density is 

uniquely determined. In other words, the external potential is a unique functional of the 

density. The second theorem is that there is a universal functional for the energy that can 
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be defined in terms of the electron density. The exact ground state of the system is the 

global minimum value of this functional. 

 

In simple words, the basic idea behind DFT is that the energy of an electronic system 

can be written in terms of the electron probability density67, . For a system of  

electrons, the total electron density at a particular point in space , is denoted as . 

The electronic energy  is a functional of the electron density , in the sense that 

there exists a one-to-one correspondence between the electron density of a system and 

the energy. The significance of the Hohenberg-Kohn theorem is best illustrated when 

comparing it with the previously analyzed wavefunctions approach. A wavefunctions for 

an N-electron system contains 4N variables, three spatial, and one spin coordinate for 

each electron. The electron density on the other hand only depends on three spatial 

coordinates, and it is independent of the number of electrons. While the complexity of a 

wavefunctions increases exponentially, as we increase the number of electrons, the 

electron density is independent of the system size. Although appealing at first, DFT has 

one major downside: although it has been proven that each different density yields a 

different ground state energy, the functional connecting these two quantities is not 

known. The goal of DFT theory is to design functionals connecting the electron density 

with the energy. Early attempts of DFT models were not very successful, mainly because 

they tried to express all the energy components as a functional of the electron density. 

Recently though, this has changed, and this success is based on the suggestion by Kohn 

ρ n

r ρ(r)
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and Sham that the electron kinetic energy should be calculated from an auxiliary set of 

orbitals that are used to represent the electron density. 

 

Perhaps the most important step in DFT is the derivation of a set of one-electron 

equations from which we will obtain the electron density . Kohn and Sham showed 

that the exact ground state electronic energy  of an - electron system can be written 

as 

 

          
(eq. 2.32)

 
 

where the one-electron spatial orbitals  are the Kohn-Sham orbitals.  

The first term of this equation is the kinetic energy of non-interacting electrons, the 

second term represents the electron-nuclear attraction, and the third the Coulomb 

interaction between the total charge distribution. The last term, denoted as , is 

the exchange-correlation energy of the system, is also a functional of the electron 

density, and takes into account all non-classical electron-electron interactions and a 

correction for the kinetic energy. This term does not have an analytical form, and is the 

one that cannot be obtain directly. We therefore need to express this term in an 

approximate way in order to get the ground state energy of the system, which will 

correspondingly be approximate as well. 
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The ground-state electron density is given by  

         (eq. 2.33) 

 

and is considered to be known once these orbitals have been computed. These Kohn-

Sham (KS) orbitals are found by solving the KS equation, which are derived by applying 

the variational principle to the electronic energy . The KS orbitals can either be 

computed numerically or expressed in terms of a set of basis functions. This set of 

calculated orbitals, can be used to compute the electron density and by using some 

approximate form for the exchange-correlation energy and compute an electronic 

energy. This procedure is repeated until the density and exchange-correlation energy 

have converged to the desired level.  

There are many different schemes that one can employ in order to obtain an approximate 

form of the functional for the exchange-correlation energy. This exchange-correlation 

functional is often separated into an exchange functional and a correlation functional. 

The most basic approximation is the local density approximation (LDA) the exchange-

correlation functional is expressed as  

        (eq. 2.34) 

 

where  is the exchange-correlation energy per electron in a homogeneous 

electron gas of fixed density. Although this approximation scheme is very basic, it can 

be surprisingly accurate, especially when it comes to predict structural properties. 
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However calculated binding energies have been found to be significantly larger than the 

experimental ones. To account for the inhomogeneity of the electron density, we can add 

a non-local correction that involves the gradient of the density. There are numerous 

different gradient-corrected functionals. The generalized gradient approximation (GGA), 

which is basically a gradient-corrected LDA, can produce accurate geometrical 

parameters and binding energies. DFT calculations, involving GGA procedures, are 

especially efficient for calculations that include d-metals68.  

 

Nowadays, there is an enormous number of functionals that has been developed, such as 

B3LYP69-71, M05-2X72, M06L73, ωB97X-D74 etc. In many cases the name of the 

functional designates a particular pairing of an exchange and a correlation functional. In 

many cases there are functionals that contain some HF corrections in conjunction with 

density functional correlation and exchange. These functionals are called hybrid 

functionals, and they can contain different “amount” of HF correction. For example the 

M05-2X functional, from the well-known family of Minnesota functionals contains 

“twice” the amount of HF exchange; 56% of the overall exchange comes from the HF 

theory.  

 

While DFT has already been noted to be computationally efficient, compared to other 

methods that account for electron correlation, it unfortunately doesn’t work great in all 

cases. It usually fails to evaluate dynamical phenomena, such as multistate resonance 

effects, interference effects etc. that depend on matrix elements between different 
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wavefunctions. Excited state is another area where DFT is just starting to progress on. 

Although the density alone carries sufficient information to determine the excited-state 

wavefunctions, only recent research projects have been focused on applying DFT to 

excited states (with the exception of symmetric molecules). Other than the main 

limitations mentioned below, DFT is usually the method of choice in order to achieve a 

particular level of theory at lowest cost. New functionals, and new methods improve 

DFT results, for example incorporating dispersion corrections, are designed in order to 

provide as broad a coverage as possible in all different types of systems studied.  
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3 THEORETICAL INVESTIGATION OF Ir2(µ-S)2(PH3)4 AND Ir2(µ-S)2(PPh3)4 

 

This research project is focused on a theoretical description of the Ir2(µ-S)2(PPh3)4 

complex and its reaction with dihydrogen. Upon reaction of Ir2(µ-S)2(PPh3)4 with two 

equivalents of H2, Ir2(µ-S)(µ-SH)(µ-Η)Η2(PPh3)4  is formed. Lack of evidence for the 

proposed mechanism, as well as some ambiguity in the experimental results, such as 

crystal structures of 2 and 3 being nearly identical, prompted interest in this reaction. A 

theoretical investigation of the proposed mechanism for this reaction scheme may 

validate it or invalidate it. Further, this exploration will uncover the details of the 

mechanism, intermediates and transition states, and will provide insight to this class of 

reactions.  

 

3.1 Experimental Information 

 

The Rauchfuss group has contributed in research areas revolving around applications of 

organometallic chemistry to basic issues related to sustainability, atom efficiency, and 

improved catalysts. More specifically, the bio-catalysis of small molecules and in 

particular H2 has been one of their active research topics of the past decade. In this bio-

catalysis, systems with metal sulfur bonds have a central role. In addition, enzymes are 

interesting from a synthetic perspective since many of these enzymes provide existence 

proofs for anticipated structures that challenge synthetic chemists.  
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Linck et al synthesized75 an Ir(II) sulfide, Ir2(µ-S)2(PPh3)4 (2), and studied its reaction 

with dihydrogen in toluene. The noble metal reactant, Ir2(µ-S)2(PPh3)4 (2) is unusual 

because it is a five-coordinate Ir(II) complex, which would have been expected to be six 

coordinate. Furthermore, the Ir centers also appear to be electron deficient as each has 16 

electrons, unless one invokes an Ir-Ir triple bond. This unprecedented structure prompted 

them to study its reactivity. Upon reaction with one equivalent of dihydrogen, H2 appears 

to undergo a homolytic activation to form the first product, Ir2(µ-S)2H2(PPh3)4 (3). 

Addition of another H2 equivalent, converts (3) to Ir2(µ-S)(µ-SH)(µ-Η)Η2(PPh3)4 (4) 

apparently via a heterolytic activation. 1H NMR as well as crystallographic studies 

showed no stable intermediate before (3), and one short-lived intermediate (4*), after 

(3). The proposed mechanism is illustrated in Figure 3.1.  

 

 

 

 

 

 

 

 

 

 

Figure 3.1  Proposed mechanism for the H2 activation on iridium center. 
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The geometrical parameters that were reported in the crystal structures, regarding the 

first H2 activation, were of particular interest. Specifically, the Ir-Ir bond reported for (2) 

and (3) only changes by 0.003 Å, preserving the metal-metal bond. This is unusual, 

considering that the classic 2-electron iridium-iridium bond would be expected to break 

upon addition of H2, as two new metal-hydrogen bonds are formed. Although we usually 

cannot directly observe the hydrogen atoms in a crystal structure, their location is 

crucial, as their position determines the type of the hydrogen activation. In the 

experiment, the iridium hydrides were located on the difference Fourier map, therefore 

their location is expected be valid In addition 1NMR reveals only one peak in the hydride 

region at δ=-17.0, which indicates that both hydrogen atoms are equivalent on the NMR 

timescale. Therefore, the question remains: must oxidative addition of dihydrogen break 

the iridium-iridium bond in (2)?  

 

The second part of the reaction, and more specifically the final product (4), is in 

agreement with experimental data (crystal structure76 and 1NMR data) that were 

previously reported by Pignolet et al. 

 

In order to clarify whether the metal-metal bond is preserved or broken, to verify the 

accuracy of the experiment, and the determine the reaction mechanism, we will  

investigate the system theoretically, using quantum chemistry, and more specifically 

DFT calculations. A theoretical investigation of the proposed mechanism for this 

reaction scheme may validate it or invalidate it. Further, this exploration will uncover the 
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details of the mechanism, intermediates and transition states, and will provide insight to 

this class of reactions.  

 

3.2 Computational Details 

 

The models used in this study are H2, Ir(µ-S)2(PH3)4 and Ir(µ-S)2(PPh3)4.  

The Gaussian 09 software suite77 was utilized for all calculations presented herein.  

 

For the model system, Ir(µ-S)2(PH3)4 the functional used was a combination of the 

exchange functional of Tao, Perdew, Staroverov, and Scuseria with the τ-dependent 

gradient-corrected functional of Tao, Perdew, Staroverov, and Scuseria (TPSS78). The 

basis set of the model system is as follows: the basis set on Ir is SDD79 with effective 

core potential80, the basis set on S and P is Pople’s split-valence triple-zeta augmented 

with d polarization functions (6-311g*)81-86, and the basis set on H is Pople’s split-

valence double-zeta augmented with d polarization functions (6-31g*) 87,88.  

 

For the full ligand system Ir(µ-S)2(PPh3)4, we used Head-Gordon’s long-range exchange 

and dispersion corrected89 functional (ωB97X-D)90,. Tsuneda et al. have exhibited91 how 

a long-range correction scheme improves the reaction barrier energies in different 

chemical reactions, as well as the overestimated polarizabilities92. Additionally, the 

presence of twelve phenyl rings (some of which have parallel displacements) increases 

the dispersion interactions, and hence a dispersion corrected functional is expected to 
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perform better in this system than a functional that does not account for dispersion (e.g. 

the Becke three-parameter hybrid exchange functional and the Lee-Yang-Parr 

correlation functional, B3LYP93). The basis set of the full ligand system is as follows: 

the basis set on Ir is SDD with effective core potential, the basis set on S and P is Pople’s 

split-valence triple-zeta augmented with d polarization functions (6-311g*), the basis set 

on C and H atoms of the PPh3 is Pople’s split-valence double-zeta augmented with  

d-polarization functions (6-31g*), and finally the basis set on the incoming H atoms that 

are activated (denoted as H΄) is Pople’s split-valence triple-zeta augmented with d 

polarization functions and diffuse functions (6-31++g**).  

 

In order to examine the behavior of the full ligand system in solution, the SMD solvation 

model95 was used, within the integral equation formalism variant (IEFPCM95-114).  

 

The spin study of the model system was performed using the more accurate CCSD115-118 

method for calibration. 

 

Finally, for the functional analysis of the full ligand system, the following 7 functionals 

were used: TPSS, TPSSh119, B3LYP, BP86120,121, M06122, M06L, PBE1PBE123,124. 

 

All structures in this thesis were created using the graphical interface of Gaussian 09, 

and the Jimp 2 software125-127.  
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3.3 Model System Ir2(µ-S)2(PH3)4 

 

In order to begin investigating the structures and reactivity of the system studied by 

Rauchfuss, we created a model system, by replacing each PPh3 with a PH3. This change 

reduces the size of the system significantly (by 120 atoms and 480 electrons). 

Furthermore, it has been shown in different studies128,129, that PH3 is a good mimic for 

the electronic parameters of PPh3. Therefore we would expect this model system to 

provide a good starting point for our calculation on the full ligand system.  

 

The optimized geometries for model structures (denoted with  ′ ) 2′ , 4′  and 4*′  were 

found to be in good agreement with the crystal structure of 2 and the proposed structures 

for 4 and 4* (Figure 3.2).  

 

 

 

 

 

 

                      2′                  4*′                 4  

 

 

Figure 3.2  Optimized structures 2′ , 4′  and 4*′ . 
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Despite the agreement for structure 2′ , the lowest energy structure for 3′  does not 

correspond to the crystal structure, as the iridium-iridium bond is elongated by 

approximately ~0.2 Å. Since this error is beyond the usual error for either the experiment 

or the calculation, we began searching for other possible arrangements for structure 3′  

that could potentially have a preserved metal-metal bond. In a previous study130,  

Hua-Jun Fan had performed an exhaustive search for other hydrogen atoms 

arrangements that could provide agreement for the heavy atom positions of the 

experimental structure of 3′ . Hydrogen addition to 2′  could produce 43 different 

arrangements (generally denoted as 3x′) that can be classified in five classes of 

structures: (i) one H is bound to each Ir, (ii) both H are bound to one Ir, (iii) one bridging 

Ir-H-Ir and the other H either on Ir or S, (iv) one H on Ir and the other on S, (v) one H on 

each S. All possibilities were re-examined in the current study, and the five lowest 

energy isomers were optimized (Figure 3.3). Three of these isomers (3a′  ,  3b′ , 3c′) are 

products of a homolytic activation, and remaining two (3i′  ,  3k′) are products arising 

from a heterolytic activation of H2. The only case where the Ir-Ir bond is preserved is 

when this first H2 activation is a heterolytic one.  
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    3a′               3b′           3c′  

 

 

 

 

 

 

         

     3i′           3k′    

 

 

 

Figure 3.3 Five lowest energy isomers of 3′ . 
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Examining the gas-phase calculated energies of the model system (Table 3.1) we can see 

that the geometrically equivalent structure for 3, which is 3a′ , is not the lowest energy 

product of first H2 activation. On the contrary, the lowest energy isomer, seems to be 3b′  

followed by the almost isoenergetic 3c′ . In fact 3a′  appears to be the highest energy 

isomer, even compared to the isomers that rise from a heterolytic activation of H2  

(3i′  and 3k′). 

 

Table 3.1 Relative Gas Phase Energies of Optimized Model System Structures  

(in Kcal/Mol) 

Structure ΔΕ ΔG 

2′     0.00 0.00 

3a′  -20.36 -9.64 

3b′  -25.73 -14.64 

3c′  -25.41 -15.41 

3i′  -22.59 -11.26 

3k′  -20.82 -9.13 

4*′  -44.41 -21.10 

4′     -44.97 -22.04 

 

 

In all cases of homolytic-activated products (3a′ , 3b′ , 3c′) the metal-metal bond appears 

to be broken, as the bond length between each iridium center is significantly elongated 
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(Table 3.2). The only model system structure that seems to match the reported bond 

length for 3 (2.754 Å) seems to be 3k′ , which corresponds to a heterolytic cleavage of 

H2 and is also quite high in energy.  

 

Table 3.2 Ir-Ir Bond Length for Optimized Model System Structures (in Å) 

Structure Bond Length 

2′     2.724 

3a′  2.927 

3b′  2.941 

3c′  3.106 

3i′  2.875 

3k′  2.761 

 

 

In all the results mentioned so far, we have assumed that all compounds 2′ , 3′ , 4*′  and 

4′  have singlet ground states. This is a relatively safe assumption, since Ir is in most 

cases low-spin. However, in order to confirm this assumption, we looked at the energy 

difference between the singlet and the triplet configuration, by performing single point 

CCSD calculations in the 3΄ class of isomers, since a triplet configuration could affect 

the iridium-iridium bond length. All previously optimized isomers of the model system 

(3a′ , 3b′ ,3c′ ,3i′ ,3k′) as well as two additional isomers were used for the single point 

CCSD calculations. The additional isomers (3f′  and 3h′) were obtaining by the 
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optimized isomers of the full ligand system (3-crst and 3-heup respectively) when each 

PPh3 is replaced with PH3. The calculated energies are shown in Table 3.3.  

 

 

Table 3.3 Absolute Gas Phase Electronic Energies of Optimized Model System 

Structures  (in Hartrees) 

Structure E 

3′    Singlet -2373.87867 

3′    Triplet -2373.845823 

3a′  Singlet -2374.518947 

3a′  Triplet -2374.437888 

3b′  Singlet -2374.527705 

3b′  Triplet -2374.459736 

3f′  Singlet -2374.524291 

3f′  Triplet -2374.463431 

3h′  Singlet -2374.035303 

3h′  Triplet -2374.004975 

 

 

In all cases, the singlet configuration is lower in energy than the corresponding triplet, 

and therefore, as expected, we can exclude any spin crossing phenomena, and assume 

that all isomers will be singlet states. 

Exploring the model system, although computationally feasible, does not provide the 

expected agreement with the experimental results for all of the structures. Hence, this 
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would be a poor starting point for a study of the mechanism. The lack of steric hindrance 

and dispersion interactions between the phenyl rings, which were neglected in the small 

model, can lead to numerous isomers, which do not have an equivalent structure at the 

PES of the full ligand system. Therefore, we need to examine the full ligand system in 

order to understand and fully explore the structures and mechanism of this reaction. 

 

 

3.4 Full Ligand System Ir2(µ-S)2(PPh3)4 

 

Investigation on the full ligand system began by optimizing 2 and 3-crst (Figure 3.4) 

starting from the provided crystal structures (Figure 3.5).  

 

 

 

 

 

 

 

 

 
 
Figure 3.4  Optimized structures for 2 (left) and 3-crst (right).  

The Ir-Ir bond length changes from 2.751 Å (in 2)  
to 2.936 Å (in 3-crst). 
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Figure 3.5   Reported crystal structures for 2 (left) and 3 (right). 

The Ir-Ir bond length changes from 2.757 Å (in 2)  
to 2.754 Å (in 3-crst). 
 

 

Structure 2 was found to be in excellent agreement with the corresponding crystal 

structure (Table 3.4).  

 

Table 3.4 Geometrical Parameters for 2  

Structure / Bond Crystal Structure  Calculated 

2 / Ir-S† 2.2706(13) Å 2.293 Å 

2 / Ir-S‡ 2.3106(12) Å 2.340 Å 

2 / Ir-P† 2.2606(12) Å 2.287 Å 

2 / Ir-P‡ 2.2705(13) Å 2.291 Å 

2 / Ir-Ir 2.7575(30) Å 2.751 Å 
† indicates “short” bond  

‡ indicates “long” bond 
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In contrast, our optimized structure that corresponds to the crystal structure 3, which is 

3-crst, was not in agreement with the given crystal structure (Table 3.5). The homolytic 

cleavage of H2 appears to break the metal-metal bond, indicating an elongated bond 

length between the two metals (by ~0.18 Å). 

 

Table 3.5 Geometrical Parameters for 3-crst 

Structure / Bond Crystal Structure  Calculated 

3-crst / Ir-S† 2.2907(18) Å 2.352 Å 

3-crst / Ir-S‡ 2.3619(17) Å 2.374 Å 

3-crst / Ir-P† 2.2666(17) Å 2.254 Å 

3-crst / Ir-P‡ 2.2672(16) Å 2.310 Å 

3-crst / Ir-Ir 2.7541(50) Å 2.936 Å 
† indicates “short” bond 

‡ indicates “long” bond 

 

 

In order to confirm that this result is independent of the functional used for the 

calculation, we performed geometry optimizations with 8 different functionals. The 

functionals that were used in order to test for a possible functional dependence were: 

B3LYP, BP86, M06, M06L, PBE1PBE, TPSS, TPSSh, and ωB97X-D. These 

functionals belong in different families, and are therefore expected to demonstrate 

different behavior and yield different geometrical parameters. The optimized Ir-Ir bond 

lengths in both 2 and 3-crst that were obtained using these functionals are shown in 

Table 3.6. 
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Table 3.6 Iridium-Iridium Bond Length in 2 and 3-crst (in Å) 

Functional Bond length in 2 Bond length in 3-crst Difference  

BP86 2.87744 3.04118 0.16374 

B3LYP 2.87703 3.12952 0.25249 

TPSS 2.83228 2.98278 0.15050 

TPSSh 2.81545 2.99236 0.17691 

M06 2.80030 2.96806 0.16776 

M06L 2.76211 2.89406 0.13195 

PBE1PBE 2.80055 3.00125 0.20070 

ωB97X-D 2.75096 2.93595 0.18499 

 

 

As we can see, that although the iridium-iridium distance varies according to the 

functional used, the iridium-iridium bond length was elongated by ~0.18 Å and the 

metal-metal bond breaks, and the homolytic cleavage occurs as we move from 2 to  

3-crst. This is in agreement with our initial hypothesis: as the incoming dihydrogen 

molecule approaches the metal core, the 2-electron bond between the two metals breaks, 

in order for the two new metal-hydride bonds to form. In other words the homolytic 

cleavage of dihydrogen is expected to break the iridium-iridium bond and to leave the 

system as an Ir(III) d6 dimer. Since this result is not supported by the experimental data, 

we need to examine the possibility of an alternative reaction mechanism: instead of a 

homolytic activation followed by a heterolytic one, we could have two heterolytic 

activations or a heterolytic followed by a homolytic one.  
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Starting from 2, we examined all possible isomers for the “First Product” class of 

isomers 3-crst, which could be obtained either by homolytic or heterolytic dihydrogen 

activation. Four stable isomers were found and are presented below. Two intermediates 

correspond to a homolytic activation of dihydrogen (Figure 3.6) and the other two are a 

result of a heterolytic activation (Figure 3.7).  

 

 

 

 

 

 

 

 

 

 

Figure 3.6   Optimized intermediates from a homolytic activation of H2 on 2. 
3-brid (left) – with one bridging and one terminal H 
3-crst (right) – with one terminal H on each Ir. 

 

2.74679 Å 2.93595 Å 



 

 54 

 

 

 
 
Figure 3.7   Optimized intermediates from a heterolytic activation of H2 on 2. 

3-heup (left) – with S-H and Ir-H on same side of the Ir-S bond 
3-hedo (right) – with S-H and Ir-H on opposite side of the Ir-S bond. 
 

 

The lowest energy isomer of this class is 3-crst (Table 3.7). This is in agreement with 

the previously proposed mechanism by Rauchfuss, if we disregard the broken metal-

metal bond. In addition, 1H NMR shows that in low temperatures (-60 °C) we have a 

triplet signal, indicating that each hydride is interacting with two PPh3. This structure 

corresponds to structure 3-crst. In higher temperatures (70 °C) a quintet signal was 

observed, which indicates that one hydride interacts with 4 PPh3. This structure 

corresponds to our calculated structure 3-brid.  

 

 

 

  2.98797 Å 2.89853 Å 
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Table 3.7 Relative Gas Phase Energies of Reactant and First Product Isomers 

 (in Kcal/Mol) 

Structure ΔΕ ΔH ΔG  

2 0.00 0.00 0.00 

3-heup -17.51 -14.11 -4.96 

3-hedo -17.92 -14.75 -4.60 

3-brid -18.79 -16.20 -6.27 

3-crst -21.95 -18.29 -8.49 

 

 

In addition, the gas phase electronic energy difference between 3-crst and 3-brid is only 

3.16 kcal/mol, and the corresponding Gibbs free energy difference is only 2.22 kcal/mol. 

We therefore decided to perform a functional analysis with the same 10 functionals used 

before (BP86, B3LYP, M05-2X, M06, M06L, TPSS, TPSSh, PBE0, mPW3PBE, 

ωB97X-D) in order to confirm this energy difference, and understand if the second 

activation happens at 3-crst or at 3-brid compounds. Tables 3.8 and 3.9 show the 

absolute gas phase energies of 3-brid and 3-crst respectively, and Table 3.10 shows the 

relative gas-phase energies of 3-brid and 3, with respect to 2. 
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Table 3.8 Absolute Gas Phase Energies of 3-brid (In Hartrees) 

Functional Ε S G  

BP86 -5151.731507 -5150.551353 -5150.748922 

B3LYP -5151.328615 -5150.115729 -5150.309418 

TPSS -5151.929186 -5150.733534 -5150.929579 

TPSSh -5151.535233 -5150.325114 -5150.519181 

M06 -5149.018641 -5147.808227 -5147.992067 

M06L -5151.033019 -5149.816546 -5150.002691 

PBE1PBE -5147.114048 -5145.891597 -5146.082344 

ωB97X-D -5150.463916 -5149.235763 -5149.421105 

 

 

Table 3.9 Absolute Gas Phase Energies of 3-crst (In Hartrees) 

Functional Ε S G  

BP86 -5151.746037 -5150.565687 -5150.760323 

B3LYP -5151.339161 -5150.125548 -5150.322481 

TPSS -5151.939293 -5150.743069 -5150.941145 

TPSSh -5151.543981 -5150.333315 -5150.529238 

M06 -5149.024486 -5147.812967 -5147.998398 

M06L -5151.040257 -5149.821353 -5150.005253 

PBE1PBE -5147.123178 -5145.899981 -5146.093330 

ωB97X-D -5150.468952 -5149.239090 -5149.424579 
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If we consider the first reaction to be a homolytic activation of H2, then one would 

expect the first step of the reaction (Figure 3.8) to be the addition of molecular hydrogen 

to one of the metal centers, denoted as 3-dbIr. 

 

 

 

 

             2                  3-dbIr   

 

Figure 3.8   First step of a possible scheme for homolytic H2 activation on 2. 

 

 

Although this isomer (shown in Figure 3.9) appears to be stable intermediate when 

optimized in some functionals, such as BP86 that doesn’t account for dispersion 

interactions, it has a small imaginary frequency when optimized under normal criteria in 

ωΒ97X-D. However, the heavy atom arrangement is almost identical between the two 

optimized structures, and therefore we believe that this structure is a suitable candidate 

for an intermediate of the first H2 activation.  
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Figure 3.9   Optimized isomer (3-dbIr) with the BP86 functional. 

 

 

We can then consider the following mechanism for the first reaction (Figure 3.10): The 

first H2 addition is an oxidative addition on one of the iridium centers (producing  

3-dbIr) followed by a migration of one hydrogen atom to the bridging site between the 

two metal centers (3-brid). The bridging hydride can then migrate to the other metal, 

forming the final product that was observed by Rauchfuss (3-crst).  

 

 

 

 

2             3-dbIr               3-brid       3-crst 

 

 

Figure 3.10  Possible reaction scheme for homolytic H2 activation on 2. 
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Since we have already examined the case of the first activation to be a homolytic one 

(Figure 3-.0), we need to examine the possibility of the first activation to occur along the 

iridium-sulfur bond (Figure 3.11).  

 

 

 (a)  

            

 

         

2             3-hedo                 3-dbIr           3-brid         3-crst

    

 

(b) 

 

 

 

2             3-hedo                        3-brid                   3-crst 

 

 

Figure 3.11   Possible reaction scheme for heterolytic H2 activation on 2. 

 

Two possible pathways are examined. In both pathways the first step is the cleavage of 

H2 along the Ir-S bond (3-hedo).  
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In the first considered mechanism shown in Figure 3.11 (a), the hydrogen of the 

sulfhydryl group migrates towards the metal hydride forming the previously examined 

dihydrogen intermediate 3-dbIr, and then follows the same mechanism as before, 

producing 3-brid and finally 3-crst. In the second plausible mechanism shown in Figure 

3.11 (b), the protonated sulfur rotates downwards, forming the bridging species (3-brid), 

which then isomerized to the final product (3-crst).  A direct comparison of the 

calculated gas-phase electronic and Gibb’s free energies (Table 3-.0) of the first-product 

class reveals that the first step is more likely to be a heterolytic activation (producing  

3-hedo), however a transition state that corresponds to a direct transition from 3-hedo to  

3-brid has not been found.  

  

Therefore, the first H2 activation can occur through three possible pathways, one 

homolytic and two heterolytic ones, as shown in Figure 3-10 and 3-11 and described in 

the paragraph above.  
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Table 3.10 Relative Gas Phase Energies of 3-brid and 3-crst (In Kcal/Mol) 

Functional 
2 3-brid 3-crst  

ΔΕ ΔG ΔΕ ΔG ΔΕ ΔG ΔΔΕ† ΔΔG†† 

BP86 0.00 0.00 -10.90 +0.20 -20.02 -6.96 -9.12 -7.15 

B3LYP 0.00 0.00 -11.39 +1.03 -18.01 -7.16 -6.62 -8.99 

TPSS 0.00 0.00 -12.67 -2.30 -19.02 -9.64 -6.34 -7.26 

TPSSh 0.00 0.00 -14.84 -2.93 -20.33 -9.24 -5.49 -6.31 

M06 0.00 0.00 -9.06 +1.85 -12.73 -2.12 -3.67 -3.97 

M06L 0.00 0.00 -11.24 -0.21 -15.78 -1.82 -4.54 -1.61 

PBE1PBE 0.00 0.00 -12.64 -0.56 -18.37 -7.46 -5.73 -6.89 

ωB97X-D 0.00 0.00 -18.79 -6.45 -21.95 -8.63 -3.16 -2.18 

† ΔΔΕ refers to the electronic energy of 3-crst minus the electronic energy of 3-brid  
††ΔΔG refers to the Gibbs free energy of 3-crst minus the Gibbs free energy of 3-brid 
 

 

Table 3.10 shows that 3-crst is always the lowest energy isomer for the first-product 

class. The electronic energy as well as the Gibbs free energy of 3-crst is always lower 

than 3-brid; this result seems to be independent of the functional. However, the relative 

difference between the respective electronic (ΔΔΕ) or Gibbs free energy (ΔΔG) varies 

according to the functional used for the calculation, and it can be as low as 1.61 

kcal/mol. This result is in agreement with the 1H NMR results that predict 3-crst to be 

the stable structure in low temperatures, but not in higher temperatures.  
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We can therefore conclude that isomer 3-crst is in equilibrium with 3-brid near room 

temperature, and we need to examine both cases: the case where H2 is activated on 3-

crst and the case where the second activation occurs at 3-brid. Before exploring the 

mechanism of the second activation, all possible isomers for the second-product were 

examined. The low-energy intermediates that were found using the ωB97X-D 

functional, are shown on Figure 3.12. 

 

    

 

 

 

 

 

                         

 

 

 

 

 

 

 

Figure 3.12   Optimized intermediates from the second activation of H2. 
4-dbIr-brid (a.), 4-up (b.), 4-do (c.), 4-dbS-up (d.), 4-dbS-do (e.),  
4*-up (f.), 4*-do (g.), 4-dbS-br-up (h.) and 4-dbS-br-do (i.). 
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Figure 3.12 (cont.)    
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The relative energies of the second-product isomers are shown in Table 3.11.  

 

All isomers presented above are lower in energy than 3-crst and than 3-brid and 

therefore could be suitable intermediates for the second dihydrogen activation. Other 

isomers were also optimized, however they are not presented here, since they appear to 

be really high in energy.  

 

However, the system is very crowded, due to the presence of the four 

triphenyphosphines, and therefore we need to examine how the geometry of the system 

Table 3.11  Relative Gas Phase Energies of Reactant and Second Product Isomers 

(in Kcal/Mol) 

Structure ΔΕ ΔH ΔG  

2 0.00 0.00 0.00 

4-dbIr-brid -28.74 -23.63 -4.41 

4-up -56.52 -50.55 -32.35 

4-do -55.33 -48.51 -29.26 

4-dbS-up -52.09 -46.16 -28.73 

4-dbS-do -50.57 -44.09 -25.80 

4*-up -50.17 -43.11 -22.56 

4*-do -51.85 -44.73 -23.65 

4-dbS-br-up -41.33 -35.19 -18.70 

4-dbS-br-do -39.69 -33.13 -14.96 
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will promote the second activation. In order to do so we will try to connect each isomer 

of the second-product class with 3 and with 3-brid, and examine all the possible 

mechanisms. Assuming that the second activation occurs at 3-crst, and considering 

geometric constraints of the system, the following possible reactions should to be 

examined (Figure 3.13): 

 

 (a) 

 

 

       3-crst                     4-SH-do                 4-do        4-up 

  

(b) 

 

        

          3-crst          4-SH-do              4-SH-up     4-up 

 

(c) 

 

 

          3-crst          4-dbS-up              4-dbS-do     4-up 

 

Figure 3.13 Possible reaction schemes for H2 activation on 3-crst. 
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In the first and second possible reactions Figure 3.13 (a) and (b), H2 is activated on the 

S-Ir bond giving 4-SH-do. In (a) the terminal hydride migrates to bridging position to 

give 4-do, and then the sulfhydryl group rotates “up” in order to get the final product, 4-

up. In (b) the sulfhydryl group rotates first to give 4-SH-up, and then the terminal 

hydride migrates to the bridging site, to isomerize in the final product, 4-up.  

These two pathways could be possible, however the exhaustive search that was 

performed in both ωΒ98Χ-D, BP86 and M06L functionals failed to locate an 

intermediate that corresponds to 4-SH-up and 4-SH-do.  

 

In the third reaction scheme (c), H2 is activated homolytically at each S. This reaction, 

although possible due to the geometry and the energy of the isomers, cannot occur, since 

it is symmetry forbidden. Each S atom acts like a Lewis base, since it has a lone pair of 

electrons. As the H2 approaches the core of the sulfide, S cannot provide an orbital of the 

correct symmetry that would accept the electron pair of the σ orbital of dihydrogen. 

Therefore this reaction will not proceed via this mechanism. That being the case, the 

reaction will not proceed via this mechanism.  

 

Hence, we can see that the second activation cannot occur on 3-crst, and we need to 

examine the possibility that the second activation occurs at 3-brid, which as already 

mentioned seems to be in equilibrium with 3-crst. 
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When we examine the activation of dihydrogen that occurs in 3-brid we need to 

consider the following reaction mechanisms (Figure 3.14), which are in accordance with 

the energetics and the steric hindrance of the system: 

 

 

 (a)  

 

        3-brid                   4-dbS-up                 4-dbS-do  

  

 

 

 

            

                           4-up                                 (4-SH-dbbr) 

 

 

 (b) 

 

                    3-brid               4-do                       4-up 

 

 

Figure 3.14 Possible reaction scheme for H2 activation on 3-brid. 
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In the first mechanism, illustrated in Figure 3.14 (a), H2 is homolytically activated at 

each S. This pathway cannot be followed, since this reaction is symmetry forbidden. The 

second possible pathway, shown in Figure 3.14 (b), involves heterolytic activation of 

dihydrogen along the Ir-S bond, to give 4-do which is further isomerized to 4-up. This 

mechanism is symmetry allowed, and quite possible to occur due to geometric and 

energetic constraints. This heterolytic cleavage produces the final product that was 

observed by Rauchfuss, however the intermediate does not have a structure similar to the 

one supposed to be 4* (4*-up or 4*-do, not specified by the experiment).  

 

All optimized second-product isomers have a similar phenyl ring arrangement, except 

from 4* (4*-up, 4*-do). In 4* (4*-up, 4*-do) the phenyl rings are arranged completely 

different; we could get to that arrangement by a two-fold rotation on one of the metal 

centers on 4. However, this isomer does not appear to be on the same potential energy 

surface of our reaction for two reasons: the steric hindrance caused by the rings does not 

allow the dihydrogen to approach the metal-center in many directions, as there are only 3 

possible directions of the H2 to approach. This determines the position of the hydrogen 

atoms on the second-product, and the only possible way for the dihydrogen to be 

introduced leads to 4-do isomer. The possibility that the rotation occurs after the second-

activation is abandoned, due to the fact that 4*-do is ~ 10 kcal/mol higher in energy. The 

rotation could potentially occur before the second activation (resulting in a “rotated”  

3-brid species, however we were not able to locate any stable intermediates of that 

structure. 
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Combining the two parts of the reaction, we can propose a mechanism for the 

dihydrogen activation on 2 (Figure 3.15).  

 

 (a) 

 

            

           2                 3-dbIr                  3-brid      3-crst 

 

 

 

 

        4-up            4-do 

(b)  

 

 

          2            3-hedo                3-dbIr                  3-brid      3-crst 

 

 

 

          4-up                              4-do 

 

Figure 3.15  Proposed mechanisms for H2 activation on Ir2(µ-S)2(PPh3)4. 
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(c) 

 

 

          2            3-hedo                      3-brid         3-crst 

 

 

 

 

       4-up             4-do 

 

 

Figure 3.15  (cont.)   

 

The first step of the reaction is the dihydrogen activation on 2, which can be either 

homolytic (Figure 3.15 (a) - from now on described as “mechanism a”) or heterolytic 

(Figure 3.15 (b) and (c) - from now on described as “mechanism b” and “mechanism c”).  

 

In the homolytic case, the dihydrogen is added directly on the iridium forming 3-dbIr, 

and then one hydrogen atom migrates to the bridging site between the two metals  

(3-brid). Finally the bridging H migrates to a terminal position, giving rise to 3-crst.  
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In the two heterolytic cases, the incoming H2 is cleaved between the Ir-S bond, forming 

3-hedo, which can then isomerize into either 3-brIr or 3-brid in order for the reaction to 

proceed as described above.  

 

As mentioned earlier, although 3-crst is the lowest energy isomer of the first –product-

class, it appears to be in equilibrium with 3-brid, which is where the second activation 

occurs. We therefore believe that what Rauchfuss crystallized as (3) is the isomer that 

corresponds to 3-brid. If we examine the iridium-iridium bond in 3-crst and 3-brid 

(Table 3.12) we can see that the short metal-metal bond length that was observed in the 

experiment (2.757 Å), corresponds to the preserved bond that still exists in the bridging 

species (2.74671).  

 

In addition if we examine the Ir-S bond lengths we can see a correlation between the 

reported crystal structure and the optimized 3-brid structure (Table 3.13). The bond 

lengths predicted from 3-brid are all within 0.08 Å of accuracy when compared to the 

crystal structure. We can therefore conclude that the crystal structure of (3) actually 

corresponds to 3-brid, and that the crystal was most likely disordered, resulting in 

densities corresponding to hydrogen atoms on both Ir. Furthermore, it would be almost 

impossible to observe the bridging hydrogen atom of 3-brid due to the high electron 

density of the two metals, and the proximity of the H to both Ir.  
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Table 3.12 Iridium-Iridium Bond Length in 2, 3-crst and 3-brid (in Å) 

Functional Bond length in 2 Bond length in 3-crst Bond length in 3-brid 

BP86 2.87744 3.04118 2.80062 

B3LYP 2.87703 3.12952 2.81497 

TPSS 2.83228 2.98278 2.79042 

TPSSh 2.81545 2.99236 2.78092 

M06 2.80030 2.96806 2.77890 

M06L 2.76211 2.89406 2.76327 

PBE1PBE 2.80055 3.00125 2.76372 

ωB97X-D 2.75096 2.93595 2.74671 

 

 

Table 3.13 Geometrical Parameters for 3 (reported crystal structure)  

and 3-brid (optimized structure) 

Bond 

Bond length in  

3 crystal Structure  

Bond length in  

optimized 3-brid 

Ir-S† 2.2907(18) Å 2.36491 Å 

Ir-S‡ 2.3619(17) Å 2.43826 Å 

Ir-P† 2.2666(17) Å 2.31355 Å 

Ir-P‡ 2.2672(16) Å 2.32573 Å 

Ir-Ir 2.7541(50) Å 2.74671 Å 
† indicates “short” bond 

‡ indicates “long” bond 
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2
3-dbIr
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3-crst

4-do
4-up

0.00

-18.97

-21.95

-55.33
-56.52

TS1

-6.47

-40.23

TS2

The second activation is a purely heterolytic one, in which the H2 molecule is cleaved 

through the iridium-sulfur bond, forming 4-do. Finally, the hydrogen atom that bonded 

to the sulfur rotates upwards, providing the final product, 4-up. Therefore the short-lived 

intermediate observed by Rauchfuss (4*) seems to be our calculated 4-do and the final 

observed product of the reaction (originally named 4), seems to be our optimized 4-up. 

 

Relative electronic energies of intermediates and corresponding transition states are 

shown in Figure 3.16, and Figure 3.17 respectively.  

 

 

(a) 

 

 

 

 

 

 

 

 

 

Figure 3.16 Electronic profile for the proposed mechanisms a , b and c. 
(all energies reported in kcal/mol) 
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 (b) 

 

 

 

 

 

 

 

(c) 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.16 (cont.)   
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Figure 3.17   Geometries of TS 1 (left) and TS 2 (right). 

 

 

From the energy diagram above, we can see that some transition states are missing. 

Although, it is unclear why, some were hard to calculate due to the fact that the PES is 

expected to be rather flat during most of the reactions. For example the transition state 

that corresponds to the rotation of the hydrogen between 3h-do and 3-brid can be 

calculated in functionals that lack dispersion, but cannot be located using ωB97X-D. The 

same applies to the transition state that connects 3-dbIr and 3-brid. Future work that is 

not presented in this thesis would include locating the remaining transition states. This 

work will be completed before publication of this work.  
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All calculated energies mentioned so far correspond to gas phase calculations, yet the 

experiment was conducted in toluene solutions of the sulfides. We therefore need to 

account for the solvent, by performing single-point solvation corrections. Since all 

complexes in this study are neutral, and due to the protection of the metal core by the 

surrounding phenyl rings, as well as the non-polar nature of the solvent, we would not 

expect any major discrepancies on the geometries or the relative energy differences 

between the optimized intermediates. Table 3.14 shows the relative solvated energies of 

all complexes that participate in the reaction. 

 

Table 3.14 Relative Solvated Energies of Full Ligand System Isomers  

(in Kcal/Mol) 

Structure ΔΕ ΔH ΔG  

2 0.00 0.00 0.00 

3heup -29.34 -29.70 -18.76 

3hedo -29.77 -30.67 -20.57 

3-brid -31.72 -33.77 -22.29 

3-crst -34.39 -36.04 -22.24 

4-up -80.41 -82.80 -61.64 

4-do -79.19 -80.73 -58.20 

4*-up -73.55 -74.86 -52.10 

4*-do -75.37 -75.87 -53.73 
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It is clear that 3-brid and 3-crst are indeed in equilibrium with each other, since they 

both have the same free energy, when in solution.  

If we compare the difference between the calculated gas-phase energies and the 

calculated solvation corrections (Table 3.15) we can observe that there is a constant 

difference in energy of ~41 kcal/mol due to interactions with the solvent molecules.  

 

Table 3.15 Difference Between Solvated Energies and Gas Phase Energies  

of Full Ligand System Isomers (in Kcal/Mol) 

Structure ΔΔG  

2 -43.60 

3-heup -40.98 

3-hedo -43.15 

3-brid -43.21 

3-crst -40.94 

4-up -40.05 

4-do -39.71 

4*-up -40.32 

4*-do -40.86 

††ΔΔG refers to the solvated Gibbs free energy minus the gas phase Gibbs free energy 

 

These results suggest that there is no further need to optimize each structure in solution, 

and that we can be fairly confident that the proposed reaction mechanism will not be 

changed in solution.  
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4 SUMMARY AND CONCLUSION 

 

The electronic structure and mechanistic details of two consecutive hydrogen activations 

on an iridium (II) sulfide were successfully studied in this work with the aid of density 

functional theory. Calculations using the ωB97X-D functional and a moderate-sized 

basis set were performed for both model system structures, as well as full ligand system 

structures, in order to fully understand the way that the reaction proceeds.  

 

The first reaction can be either homolytic or heterolytic in nature: the homolytic case 

produces a dihydrogen intermediate H2Ir(PPh3)2(µ-S)2Ir(PPh3)2 (3-dbIr) which then 

isomerizes to an intermediate with a bridging hydrogen (3-brid), leaving the bridging 

hydrogen to finally migrate on the other iridium, to produce a structure with two 

terminal hydrides (3-crst). The heterolytic activation occurs along the Ir-S bond, 

producing a reaction with a terminal hydride and a protonated sulfur (3-hedo). The 

hydrogen attached to sulfur, can either migrate to the protonated metal producing  

(3-dbIr) or it can rotate downwards, and occupy the bridging site between the two 

metals (3-brid). The reaction then proceeds as described above.  

 

The second activation occurs on 3-brid, and is purely heterolytic in nature. The 

activation occurs again along the Ir-S bond producing 4-do, followed by a rotation of the 

sulfhydryl group, which produces the final product 4-up. 

 



 

 79 

The experimental data that were reported by Rauchfuss et al. reported that the metal-

metal bond was preserved during the first reaction, something that is not validated on the 

present study. It is clear from our calculations that the metal-metal bond is broken in  

3-crst (indicated from the elongated Ir-Ir bond) yet it is preserved in the isomer with one 

bridging-hydrogen, 3-brid.  

 

We can therefore deduce, that the crystal observed by the experimental group that was 

believed to be 3-crst, was actually a discorded crystal of 3-brid. With regards to the 

second part of the reaction, the second hydrogen activation proceeds through the 

bridging isomer, since 3-brid appears to be more stable in solution than 3-crst. The final 

product of the reaction is Ir2(µ-S)(µ-SH)(µ-Η)Η2(PPh3)4 (4) which is in agreement with 

the result reported by Rauchfuss and in good agreement with the previously published 

crystal structure by Pignolet et al. The short-lived intermediate that was proposed by 

Rauchfuss (4*), exists in the form 4-do, but it appears to be geometrically different than 

the structure proposed.  

 

The unusual reactivity of this system, which causes the system to bind two equivalents 

of hydrogen, could potentially be utilized in catalytic cycles, incorporating other 

transition metals that would provide a cheap but effective alternative to platinum-based 

catalysts.  
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APPENDICES 

 

Appendix A: Geometrical Parameters of Isomers of the Model System 

 

Cartesian Coordinates of 2΄  

 

Symbol X Y Z 

S 0.077524 -0.815656 1.70198 

S -0.077523 -0.815621 -1.701994 

P 2.135477 1.674151 1.188963 

P 3.367072 -0.929854 -0.593594 

P -3.367072 -0.929863 0.593575 

P -2.13548 1.674168 -1.188935 

Ir -1.355378 -0.01324 0.120857 

Ir 1.355378 -0.013237 -0.120856 

H 3.483786 1.737486 1.635216 

H 2.082914 2.980567 0.643628 

H 1.512443 1.957508 2.428348 

H 3.891388 -0.986386 -1.911327 

H 4.557148 -0.479458 0.033862 

H 3.501947 -2.304686 -0.294065 

H -3.891381 -0.986438 1.91131 

H -4.557149 -0.479438 -0.033861 

H -3.501956 -2.304684 0.293998 

H -3.483795 1.737512 -1.635174 

H -2.082907 2.98058 -0.643588 

H -1.512456 1.957536 -2.428324 
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Cartesian Coordinates of 3f΄  

 

Symbol X Y Z 

S 0.063686 -1.616947 -0.890567 

S -0.051817 1.609436 -0.899231 

P -3.311531 -1.167617 -0.689161 

P -2.329964 1.616079 1.371733 

P 3.288923 0.806233 -1.006692 

P 2.371783 -1.372122 1.615911 

Ir 1.461684 0.050574 0.047378 

Ir -1.472491 -0.021669 -0.023041 

H 1.726432 1.185854 1.11981 

H -1.591168 -0.960843 1.222419 

H -3.157181 -1.777705 -2.415852 

H -4.866571 -0.192716 -0.786364 

H -3.766736 -2.685402 0.239141 

H 2.930352 1.283648 -2.75007 

H 4.146079 2.286748 -0.334327 

H 4.645268 -0.412189 -1.251947 

H 3.855425 -0.735964 2.504221 

H 2.837337 -3.07885 1.140577 

H 1.209651 -1.705762 3.001936 

H -3.51845 1.040591 2.664464 

H -3.131542 3.090989 0.647252 

H -0.964825 2.317529 2.384691 
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Cartesian Coordinates of 3h΄  

 

Symbol X Y Z 

S -0.021235 1.556985 -0.986884 

S 0.014482 -1.710984 -0.816394 

P 3.353572 1.128893 -0.69212 

P 2.297155 -1.402387 1.533401 

P -3.27195 -0.708631 -1.041017 

P -2.343615 1.431082 1.572923 

Ir -1.439163 -0.055402 0.096296 

Ir 1.455183 0.008615 -0.045608 

H -1.741987 -1.168248 1.202669 

H 0.128351 -1.35181 -2.108086 

H 3.256763 1.56068 -2.480016 

H 4.9482 0.20667 -0.627073 

H 3.79585 2.735105 0.094154 

H -2.845653 -1.137128 -2.784619 

H -4.150479 -2.210144 -0.442303 

H -4.644156 0.491768 -1.29048 

H 0.909488 -2.104253 2.516176 

H -3.850876 0.839685 2.457113 

H 3.348676 -0.606372 2.819102 

H 3.22884 -2.90871 1.050807 

H -1.237582 1.877762 2.96642 

H -2.798371 3.107234 0.97783 
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Cartesian Coordinates of 3a΄  

 

Symbol X Y Z 

S -0.025803 1.633162 -0.911846 

S 0.025648 -1.633741 -0.910972 

P -3.17693 -1.41234 -0.314909 

P -2.557396 1.760349 0.969123 

P 2.558408 -1.759947 0.968831 

P 3.1761 1.413376 -0.314768 

Ir 1.463436 -0.004957 0.010671 

Ir -1.463444 0.004728 0.010862 

H -4.346337 -1.328898 0.481345 

H -3.8068 -1.399103 -1.580928 

H -2.949257 -2.803073 -0.215638 

H -2.822069 2.927179 0.219638 

H -3.853556 1.57867 1.517708 

H -1.967939 2.382845 2.093423 

H 2.822324 -2.927182 0.219718 

H 3.855154 -1.577858 1.515884 

H 1.97026 -2.381871 2.094145 

H 4.346421 1.32898 0.480046 

H 3.804547 1.402381 -1.581503 

H 2.948189 2.803887 -0.212999 

H -1.507173 -0.726756 1.426057 

H 1.506575 0.726181 1.426011 

 

 

 

 



 

 91 

Cartesian Coordinates of 3b΄ 

 

Symbol X Y Z 

S -0.008953 -1.610661 -1.056178 

S -0.008841 1.610475 -1.056398 

P 2.547413 1.74441 0.833882 

P 2.547015 -1.744418 0.834531 

P -2.777913 -1.762759 0.51698 

P -2.777408 1.763089 0.517559 

Ir -1.418202 0.000054 -0.020502 

Ir 1.516274 -0.000086 -0.212991 

H 3.691071 1.534388 1.649209 

H 3.063726 2.810214 0.063132 

H 1.799077 2.515835 1.751161 

H 3.063071 -2.810665 0.064224 

H 3.690712 -1.534336 1.649788 

H 1.798481 -2.51527 1.752127 

H -2.450414 -2.61781 1.595704 

H -4.133329 -1.53786 0.87 

H -2.98905 -2.759404 -0.459802 

H -4.132998 1.538489 0.870096 

H -2.449909 2.617389 1.596887 

H -2.987904 2.760398 -0.458681 

H 2.731872 -0.000447 -1.219041 

H -1.047928 -0.000348 1.51106 
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Cartesian Coordinates of 3c΄  

 

Symbol X Y Z 

S 0.000005 1.604425 -0.953477 

S 0.000005 -1.60443 -0.953469 

P -2.709275 -1.732377 0.776313 

P -2.709273 1.732381 0.776306 

P 2.709266 -1.732377 0.776341 

P 2.709266 1.732381 0.776332 

Ir 1.55296 -0.000001 -0.170162 

Ir -1.552958 0 -0.170177 

H -3.999327 -1.526634 1.330652 

H -3.022712 -2.861116 -0.014483 

H -2.150435 -2.427432 1.874805 

H -3.02271 2.861117 -0.014495 

H -3.999324 1.526642 1.330648 

H -2.150431 2.427441 1.874795 

H 3.022713 -2.861116 -0.014451 

H 3.99931 -1.526635 1.330697 

H 2.150411 -2.427434 1.874826 

H 3.999309 1.526641 1.330692 

H 3.022716 2.861114 -0.014468 

H 2.15041 2.427446 1.87481 

H -2.636048 -0.000001 -1.313119 

H 2.636061 -0.000004 -1.313093 
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Cartesian Coordinates of 3i΄  

 

Symbol X Y Z 

S -0.049922 -1.543067 -1.386381 

S 0.048059 1.547561 -1.260748 

P 2.373508 1.756559 0.804369 

P 2.398463 -1.676999 1.106422 

P -2.291631 1.782162 0.886682 

P -2.648724 -1.548366 0.905312 

Ir -1.433685 0.006005 -0.176538 

Ir 1.441021 -0.047536 -0.170728 

H 3.504722 1.592163 1.644947 

H 2.877616 2.776176 -0.028234 

H 1.603043 2.559025 1.674265 

H 3.271716 -2.641649 0.541747 

H 3.233096 -1.321244 2.19668 

H 1.578844 -2.593344 1.814031 

H -2.733493 2.89446 0.130097 

H -3.423224 1.665342 1.736664 

H -1.474343 2.496611 1.795412 

H -3.227828 -1.2686 2.17213 

H -3.824779 -2.114032 0.333808 

H -2.058601 -2.789016 1.266627 

H 2.729235 -0.151052 -1.09286 

H -0.065271 -2.679217 -0.633517 
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Cartesian Coordinates of 3k΄  

 

Symbol X Y Z 

S 0.115106 0.818239 1.864393 

S 0.088046 -1.987394 0.437641 

P 1.818068 1.944677 -1.154636 

P 3.376778 -0.683879 0.325751 

P -2.353544 -1.354846 -1.376011 

P -2.626826 1.756162 -0.039469 

Ir -1.419623 -0.128065 0.270184 

Ir 1.300922 -0.06048 -0.194447 

H 3.161909 2.347718 -1.380611 

H 1.354453 2.192947 -2.469763 

H 1.374593 3.168391 -0.588727 

H 3.723921 -2.043191 0.162945 

H 4.497168 -0.114718 -0.330977 

H 3.824408 -0.513357 1.657173 

H -2.742517 -2.687426 -1.104686 

H -3.52941 -0.939633 -2.057045 

H -1.559402 -1.60835 -2.516256 

H -3.209857 2.048769 -1.301237 

H -3.795907 2.034142 0.725247 

H -2.018825 3.023423 0.161056 

H 1.556267 -0.774822 -1.599739 

H 0.035567 2.15879 1.643786 
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Cartesian Coordinates of 4΄  

 

Symbol X Y Z 

S -0.094629 -0.928373 -1.774047 

S 0.204371 -1.316261 1.376224 

P -2.6119 1.651056 -0.948635 

P -2.951205 -1.441314 0.648676 

P 3.194674 -1.047429 -0.690136 

P 2.248139 1.298107 1.582818 

Ir 1.382941 0.217538 -0.209242 

Ir -1.372111 0.09927 0.176987 

H -4.003597 1.460362 -1.14435 

H -2.693005 2.96915 -0.438654 

H -2.302398 2.007522 -2.286583 

H -3.044598 -1.904798 1.976085 

H -4.322493 -1.157693 0.429398 

H -2.889106 -2.685471 -0.01478 

H 4.256614 -0.541374 -1.475065 

H 3.975065 -1.590751 0.358509 

H 2.949182 -2.236867 -1.408597 

H 3.146298 0.611507 2.43116 

H 2.980177 2.503925 1.455236 

H 1.308975 1.708693 2.549086 

H -1.743884 0.815544 1.555113 

H -0.218627 -0.000737 -2.75938 

H -0.020966 1.306954 0.017715 

H 1.836952 1.347684 -1.286959 
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Cartesian Coordinates of 4*΄  

 

Symbol X Y Z 

S 0.178537 0.760256 1.862996 

S 0.036824 -1.984479 0.366858 

P 2.254804 1.920973 -1.031447 

P 3.181983 -1.011658 0.618348 

P -2.44924 -1.350819 -1.350739 

P -2.671483 1.826627 0.069385 

Ir -1.44629 -0.090066 0.23297 

Ir 1.332741 -0.016412 -0.284119 

H 3.657885 2.119038 -0.973702 

H 2.087455 2.282211 -2.389549 

H 1.890587 3.177117 -0.478934 

H 3.489825 -2.329681 0.22079 

H 4.473209 -0.450093 0.449328 

H 3.225947 -1.200508 2.017395 

H -2.953227 -2.611178 -0.976872 

H -3.59246 -0.866909 -2.042535 

H -1.66935 -1.730378 -2.460987 

H -3.666974 1.96199 -0.932184 

H -3.470953 2.240834 1.161577 

H -2.036641 3.075746 -0.157272 

H 1.673997 -0.683744 -1.696755 

H 0.108176 2.109117 1.69222 

H -0.138002 0.527286 -1.049954 

H -2.522904 -0.611296 1.295015 
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Appendix B: Geometrical Parameters of Isomers of Full Ligand System 

 

Cartesian Coordinates of 2  

 

Symbol X Y Z 
Ir -1.377808 0.338388 -0.078414 
Ir 1.368985 0.334337 0.073456 
S -0.054008 1.140266 1.677673 
S 0.053067 1.090134 -1.707188 
P 3.297915 1.310631 0.818729 
P 2.212442 -1.296771 -1.29749 
P -3.313166 1.255288 -0.883517 
P -2.209318 -1.230189 1.367703 
H -1.53073 3.254149 0.257908 
H -1.266238 5.685429 -0.084658 
H -2.574672 6.850741 -1.852289 
H -4.184161 5.56511 -3.241163 
H -4.50244 3.150347 -2.857297 
H -2.016816 -0.059475 -3.118381 
H -2.815284 -0.985259 -5.268657 
H -5.23996 -0.943596 -5.82235 
H -6.846218 0.088671 -4.231605 
H -6.04827 1.043841 -2.1063 
H -4.556713 3.364629 0.795279 
H -6.425438 3.327878 2.400578 
H -7.741379 1.24866 2.745473 
H -7.199391 -0.7847 1.411775 
H -5.363374 -0.739151 -0.218715 
H -2.389356 -2.072525 -1.339601 
H -4.002053 -3.394057 -2.654273 
H -5.984388 -4.412956 -1.53604 
H -6.308315 -4.105478 0.907327 
H -4.713238 -2.759106 2.213532 
H 2.513133 6.93837 1.535719 
H 4.177336 5.740125 2.937674 
H 4.512141 3.313001 2.665015 
H 2.042372 0.030485 3.098861 
H 2.871203 -0.794275 5.278189 
H 5.292345 -0.652948 5.828779 
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H 6.356597 3.270478 -2.582809 
H 7.712456 1.202779 -2.824738 
H 7.214532 -0.769938 -1.387561 
H 5.381287 -0.677165 0.245872 
H 2.388422 -2.024144 1.448264 
H 4.022708 -3.251949 2.822975 
H 6.031934 -4.275625 1.757515 
H 6.363094 -4.064044 -0.695124 
H 4.747507 -2.804012 -2.063483 
H 3.039664 1.221614 -2.453256 
H 4.16004 1.852548 -4.569684 
H 4.712496 0.105731 -6.251943 
H 4.124528 -2.265905 -5.804733 
H 3.010801 -2.889503 -3.69029 
H 0.109222 -1.217661 -3.305623 
H -1.539355 -2.86453 -4.130374 
H -1.603385 -5.156714 -3.164428 
H 0.00894 -5.782246 -1.380812 
H 1.652107 -4.140034 -0.559747 
H 6.865093 0.374023 4.201122 
H 6.037508 1.225711 2.043763 
H 4.491302 3.352688 -0.97346 
H -3.058008 1.3359 2.396517 
H -4.198264 2.060373 4.471419 
H -4.750973 0.394029 6.232569 
H -4.1448 -1.993283 5.904588 
H -3.011463 -2.710632 3.831566 
H -0.246106 -1.105516 3.530259 
H 1.439127 -2.689156 4.398986 
H 1.695612 -4.934742 3.359584 
H 0.247385 -5.573133 1.444926 
H -1.432589 -3.997136 0.577815 
H 1.457237 3.232577 -0.369724 
H 1.170114 5.672957 -0.135801 
C 3.592962 5.197306 2.202412 
C 3.781448 3.823394 2.046957 
C 3.976474 0.692953 2.416558 
C 3.096751 0.114154 3.343898 
C 4.925123 -0.275442 4.880322 
C 3.567555 -0.360413 4.56812 



 

 99 

C 5.808698 0.299879 3.966192 
C 5.33794 0.785095 2.745553 
C 1.900459 5.160599 0.481073 
C 2.656299 5.869677 1.416 
C 4.784765 1.335423 -0.259975 
C 6.903918 1.242603 -2.103014 
C 5.084786 2.448987 -1.057276 
C -3.057337 3.036462 -1.255054 
C -4.154079 -3.275202 -1.587188 
C -4.533007 -2.918204 1.157463 
C -5.446649 -3.667767 0.414305 
C -3.01014 -0.739304 2.942678 
C -3.955501 1.013337 4.329219 
C -4.263474 0.078459 5.316179 
C -3.324975 0.607356 3.152166 
C -5.264245 -3.842235 -0.959493 
C -1.973093 5.134131 -0.695311 
C -2.709933 5.787454 -1.684745 
C -3.795159 3.699379 -2.245175 
C -3.971648 0.560861 -2.458427 
C -3.526534 -0.551847 -4.573021 
C -4.886087 -0.522151 -4.887488 
C -4.806522 1.307713 0.185146 
C -6.188448 2.432786 1.835342 
C -6.93132 1.267598 2.024633 
C -6.62754 0.127314 1.279147 
C -3.42496 -2.329894 0.53286 
C -5.579444 0.149482 0.361806 
C -3.241473 -2.527934 -0.844506 
C -5.334735 0.599223 -2.791079 
C -5.131888 2.454435 0.923336 
C -5.788289 0.056412 -3.994021 
C -3.073062 -0.020843 -3.365606 
C -0.965447 -2.437528 1.992838 
C -3.926441 -1.26505 5.13074 
C -0.812624 -3.70221 1.416047 
C 0.808896 -2.977452 3.564213 
C 0.953711 -4.239755 2.981037 
C 0.142123 -4.597219 1.907339 
C 3.02438 3.104352 1.111721 



 

 100 

C 2.072538 3.783934 0.335249 
C -0.139309 -2.082666 3.074253 
C -3.297977 -1.670704 3.954905 
C -3.616333 5.066213 -2.463072 
C -2.13394 3.764252 -0.487578 
C 5.57868 0.184273 -0.380576 
C 3.44307 -2.332792 -0.407562 
C 4.178502 -3.174766 1.752604 
C 3.254145 -2.478404 0.975569 
C 5.490254 -3.623583 -0.224749 
C 4.566206 -2.923502 -1.002223 
C 3.906991 -1.502901 -5.064922 
C 4.233506 -0.167764 -5.317701 
C 3.002976 -0.877215 -2.898483 
C 3.307006 0.459736 -3.174916 
C 3.926125 0.812018 -4.375002 
C 0.958381 -3.852035 -1.340452 
C 3.289181 -1.854883 -3.866353 
C 0.995165 -2.55748 -1.868573 
C 0.086025 -2.216252 -2.885592 
C -0.839224 -3.146756 -3.3509 
C -0.876667 -4.434638 -2.807841 
C 0.02585 -4.784041 -1.806377 
C 5.303544 -3.74421 1.154306 
C 6.624505 0.135901 -1.299503 
C 6.1388 2.401414 -1.971145 
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Cartesian Coordinates of 3-brid  

 

Symbol X Y Z 
Ir 1.412679 0.110271 0.242939 
Ir -1.305161 0.176012 -0.148686 
S 0.135283 1.162859 -1.67201 
S -0.194045 1.328716 1.56631 
P -3.110837 1.412296 -0.92007 
P -2.351153 -1.317953 1.308722 
P 3.221258 1.404955 0.854041 
P 2.295066 -1.490039 -1.181079 
H 1.475457 3.068883 -0.79029 
H 1.287142 5.504925 -1.114852 
H 2.605172 7.068143 0.309096 
H 4.137963 6.156437 2.04119 
H 4.385428 3.721213 2.319958 
H 1.72456 0.78706 3.282365 
H 2.354665 0.523861 5.652005 
H 4.737986 0.699822 6.343126 
H 6.480218 1.179872 4.635804 
H 5.853495 1.468961 2.271415 
H 4.821911 3.141309 -0.983547 
H 6.848479 2.703141 -2.32029 
H 7.997028 0.50636 -2.169426 
H 7.1054 -1.24724 -0.641878 
H 5.085579 -0.813028 0.694107 
H 2.348592 -2.718767 1.413143 
H 3.861811 -4.28113 2.565535 
H 5.930266 -5.08425 1.430495 
H 6.430329 -4.324903 -0.882093 
H 4.909225 -2.781993 -2.040757 
H -2.178609 6.957031 -1.917671 
H -3.78883 5.704163 -3.335492 
H -4.173018 3.298254 -2.94573 
H -1.840011 0.090328 -3.172914 
H -2.679558 -0.87995 -5.283821 
H -5.112899 -0.846659 -5.798422 
H -6.087683 3.757659 2.301398 
H -7.542426 1.779964 2.68709 
H -7.125518 -0.319454 1.412929 
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H -5.276648 -0.440078 -0.195387 
H -2.522191 -2.078778 -1.426539 
H -4.219345 -3.185479 -2.819385 
H -6.310309 -4.062662 -1.780407 
H -6.660846 -3.821622 0.666008 
H -4.982725 -2.669887 2.05565 
H -3.000337 1.327186 2.355933 
H -4.096431 2.111065 4.425535 
H -4.826575 0.472085 6.146416 
H -4.428401 -1.954832 5.784912 
H -3.322304 -2.733336 3.719607 
H -0.133572 -1.116297 3.112908 
H 1.441775 -2.750401 4.101767 
H 1.271525 -5.163861 3.506776 
H -0.488418 -5.921885 1.928465 
H -2.07208 -4.291089 0.95601 
H -6.690732 0.223231 -4.203639 
H -5.858225 1.214716 -2.111325 
H -4.214879 3.631743 0.706971 
H 3.082857 1.104646 -2.240822 
H 4.19178 1.825787 -4.329415 
H 4.762316 0.15064 -6.076549 
H 4.210965 -2.245414 -5.713074 
H 3.123631 -2.962123 -3.616694 
H 0.454294 -1.312115 -3.439493 
H -1.360829 -2.762491 -4.282549 
H -1.897308 -4.895984 -3.121248 
H -0.606213 -5.551733 -1.102109 
H 1.205582 -4.12155 -0.266797 
H -1.228725 3.337901 0.201379 
H -0.91651 5.763466 -0.133998 
C -3.24492 5.194196 -2.547652 
C -3.459279 3.83315 -2.328337 
C -3.789391 0.708367 -2.479643 
C -2.903335 0.114193 -3.3934 
C -4.74361 -0.411038 -4.876087 
C -3.379277 -0.436779 -4.583002 
C -5.629862 0.188008 -3.980386 
C -5.156414 0.749967 -2.794159 
C -1.628148 5.228551 -0.753113 
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C -2.336554 5.89619 -1.753649 
C -4.592544 1.578841 0.151454 
C -6.727679 1.726664 1.973381 
C -4.846713 2.763789 0.856397 
C 2.972701 3.221179 0.759882 
C 4.090654 -3.964883 1.553457 
C 4.655773 -3.122881 -1.044897 
C 5.528297 -3.988423 -0.381655 
C 3.082835 -0.979224 -2.753266 
C 3.975628 0.775194 -4.171635 
C 4.292023 -0.164199 -5.151016 
C 3.365728 0.370303 -2.983058 
C 5.248917 -4.41433 0.917094 
C 1.966724 5.121897 -0.361573 
C 2.704838 5.995279 0.437357 
C 3.707249 4.105171 1.565873 
C 3.742032 1.150626 2.602707 
C 3.123508 0.726689 4.914095 
C 4.460974 0.828743 5.302164 
C 4.80113 1.19198 -0.055612 
C 6.464506 1.932282 -1.660648 
C 7.110159 0.69925 -1.575453 
C 6.611802 -0.284839 -0.719531 
C 3.491977 -2.662724 -0.414023 
C 5.465891 -0.040558 0.034172 
C 3.226146 -3.0907 0.897198 
C 5.081931 1.2613 3.004422 
C 5.318136 2.180666 -0.903262 
C 5.438564 1.097076 4.344496 
C 2.765349 0.882322 3.575209 
C 0.983622 -2.623623 -1.809989 
C 3.985772 -1.512466 -4.945803 
C 0.660695 -3.816696 -1.152434 
C -0.793537 -3.06406 -3.40846 
C -1.096491 -4.261682 -2.756251 
C -0.372092 -4.629858 -1.624031 
C -2.752037 3.159674 -1.323162 
C -1.817571 3.861494 -0.546924 
C 0.234134 -2.247369 -2.937904 
C 3.380833 -1.916866 -3.757925 



 

 104 

C 3.568999 5.483878 1.408169 
C 2.086283 3.740876 -0.193274 
C -5.43853 0.477683 0.355875 
C -3.622793 -2.299433 0.418369 
C -4.383458 -3.09726 -1.751175 
C -3.424322 -2.465642 -0.961091 
C -5.752602 -3.44437 0.208056 
C -4.794348 -2.807053 0.99762 
C -4.135864 -1.235838 5.027211 
C -4.355298 0.128795 5.231468 
C -3.144387 -0.756451 2.861272 
C -3.340576 0.609095 3.089933 
C -3.94814 1.049039 4.266542 
C -1.309773 -3.951411 1.648222 
C -3.52521 -1.675118 3.854068 
C -1.222165 -2.597207 1.984462 
C -0.222286 -2.172586 2.875877 
C 0.668397 -3.093025 3.421987 
C 0.576019 -4.447082 3.082598 
C -0.410818 -4.872814 2.194773 
C -5.554211 -3.583294 -1.167962 
C -6.49415 0.549189 1.261471 
C -5.907195 2.834346 1.761594 
H 1.812597 -0.729449 1.51933 
H 0.054548 -0.96422 0.193887 
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Cartesian Coordinates of 3-hedo 

 

Symbol X Y Z 
Ir 1.4581 -0.24221 0.209709 
Ir -1.513688 -0.269042 0.519128 
S 0.06789 1.190246 1.512828 
S 0.033181 -1.914981 1.164979 
P -3.285293 1.083048 1.067784 
P -2.435956 -1.583751 -1.088438 
P 3.363948 -1.03406 1.095677 
P 2.262976 1.413543 -1.149254 
H 1.511042 -0.468323 3.295037 
H 1.183441 -1.456932 5.530456 
H 2.510763 -3.441676 6.232434 
H 4.189111 -4.408714 4.677024 
H 4.553138 -3.404446 2.462741 
H 2.54642 -3.033938 -0.836265 
H 3.730455 -4.79615 -2.090829 
H 6.195489 -5.059597 -1.851093 
H 7.442201 -3.577234 -0.294512 
H 6.254494 -1.842229 0.987005 
H 3.900632 0.500225 3.551192 
H 5.43068 2.348061 4.07992 
H 7.044273 3.168502 2.374627 
H 7.131773 2.071591 0.141298 
H 5.630497 0.204374 -0.38041 
H 3.20235 -1.037268 -2.376805 
H 5.28282 -1.698406 -3.522763 
H 7.081025 -0.01627 -3.910612 
H 6.755112 2.326318 -3.147665 
H 4.696332 2.97125 -1.961536 
H -3.125381 2.729545 6.562266 
H -4.385498 4.077879 4.89742 
H -4.435418 3.395161 2.530457 
H -1.501698 3.234383 0.642391 
H -1.629712 5.430147 -0.484027 
H -3.75418 6.157918 -1.566427 
H -6.937409 -1.507814 3.210393 
H -8.169682 -1.938384 1.093013 
H -7.337288 -0.933584 -1.031066 
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H -5.31365 0.433013 -1.040389 
H -2.492058 1.090152 -2.05882 
H -3.919118 2.356888 -3.635692 
H -5.814362 1.22161 -4.780821 
H -6.237807 -1.189965 -4.355772 
H -4.815754 -2.44435 -2.793143 
H -3.678636 -2.335487 1.359182 
H -5.104591 -4.235248 2.080529 
H -5.567077 -6.106746 0.50859 
H -4.613239 -6.054855 -1.784723 
H -3.228875 -4.14439 -2.510087 
H -0.995523 -4.211219 -1.287931 
H 0.997892 -4.914547 -2.549476 
H 2.0642 -3.361552 -4.177041 
H 1.097287 -1.093368 -4.518222 
H -0.858538 -0.369229 -3.2342 
H -5.750595 4.682539 -1.462465 
H -5.634799 2.513041 -0.309878 
H -4.900097 -0.137507 3.205408 
H 2.821112 2.307399 1.556751 
H 3.362836 4.503671 2.549853 
H 3.388889 6.541974 1.124425 
H 2.886784 6.355095 -1.302452 
H 2.375924 4.153845 -2.2966 
H -0.337417 2.608564 -1.088212 
H -1.91398 3.395352 -2.816568 
H -1.436209 2.967299 -5.226739 
H 0.679849 1.840122 -5.877739 
H 2.312477 1.172097 -4.150673 
H -1.935547 0.02012 3.443356 
H -1.909337 0.689117 5.827029 
C -3.856007 3.183737 4.585956 
C -3.881778 2.796849 3.246019 
C -3.546974 2.698117 0.215258 
C -2.429529 3.54971 0.171389 
C -3.696611 5.196777 -1.066502 
C -2.504439 4.789006 -0.460032 
C -4.815729 4.367185 -1.011053 
C -4.746019 3.129124 -0.364472 
C -2.467254 1.280466 5.108843 
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C -3.148438 2.426242 5.520776 
C -4.936095 0.25385 1.079517 
C -7.276679 -1.322745 1.090517 
C -5.426043 -0.303713 2.272777 
C 3.075881 -1.847357 2.725009 
C 5.151157 -0.669823 -3.20453 
C 4.804748 1.956144 -2.323556 
C 5.978062 1.587209 -2.983702 
C 2.60298 3.06847 -0.440086 
C 3.160418 4.430879 1.487253 
C 3.172854 5.57287 0.687285 
C 2.869365 3.186493 0.927795 
C 6.160031 0.272075 -3.415406 
C 1.92824 -1.879259 4.864812 
C 2.671569 -2.994234 5.257453 
C 3.81889 -2.965225 3.127498 
C 4.311431 -2.30511 0.161069 
C 4.288098 -4.14878 -1.422325 
C 5.669637 -4.296946 -1.286585 
C 4.633355 0.222484 1.536347 
C 5.471059 1.885758 3.099646 
C 6.37865 2.343886 2.14401 
C 6.42803 1.730403 0.892609 
C 3.79457 1.013125 -2.087686 
C 5.567287 0.675157 0.592323 
C 3.975132 -0.298872 -2.553343 
C 5.696088 -2.478207 0.309406 
C 4.605179 0.834812 2.799332 
C 6.370439 -3.462843 -0.414521 
C 3.615089 -3.161932 -0.703502 
C 1.10008 1.850148 -2.497623 
C 2.890709 5.468499 -0.677256 
C 1.37889 1.635267 -3.852523 
C -1.000284 2.892849 -3.116495 
C -0.727521 2.657679 -4.466187 
C 0.459397 2.022512 -4.831255 
C -3.192967 1.651538 2.82094 
C -2.485795 0.896237 3.767547 
C -0.105542 2.469458 -2.137616 
C 2.606249 4.224564 -1.238364 
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C 3.613578 -3.536856 4.385032 
C 2.121024 -1.312975 3.606291 
C -5.657164 0.020495 -0.102504 
C -3.524791 -0.771361 -2.336743 
C -4.104116 1.30127 -3.470809 
C -3.291976 0.587268 -2.590243 
C -5.40732 -0.689613 -3.868668 
C -4.590025 -1.404677 -2.992346 
C -4.422948 -5.236944 -1.097731 
C -4.95681 -5.266891 0.193267 
C -3.384403 -3.088964 -0.628384 
C -3.905428 -3.142921 0.671017 
C -4.695933 -4.219569 1.076229 
C -0.477396 -1.374587 -3.09082 
C -3.644841 -4.154759 -1.507141 
C -1.086812 -2.239134 -2.168419 
C -0.538622 -3.518572 -1.987424 
C 0.590142 -3.920681 -2.705761 
C 1.185503 -3.051965 -3.620438 
C 0.642236 -1.780796 -3.814338 
C -5.169759 0.665573 -4.108395 
C -6.812716 -0.760152 -0.097692 
C -6.582178 -1.084577 2.27667 
H 1.700147 -1.212866 -1.030941 
H 0.117459 -2.873393 0.223409 

 

 

 

 

 

 

 

 

 

 

 



 

 109 

Cartesian Coordinates of 3-heup 

 

Symbol X Y Z 
Ir 1.429301 -0.271645 0.030749 
Ir -1.458655 -0.322895 0.272741 
S 0.062807 0.410891 1.888282 
S -0.015915 -2.161484 -0.133265 
P -3.323979 0.205601 1.504869 
P -2.36322 -0.572074 -1.803983 
P 3.287146 -1.447181 0.526554 
P 2.306986 1.800938 -0.346297 
H 1.428711 -1.635597 2.773087 
H 0.964812 -3.372977 4.458663 
H 2.133859 -5.573048 4.347846 
H 3.78819 -5.992007 2.542308 
H 4.286444 -4.245847 0.881393 
H 2.315761 -2.476086 -2.008615 
H 3.366899 -3.710162 -3.871411 
H 5.796009 -4.237069 -3.810181 
H 7.152524 -3.556314 -1.841172 
H 6.100087 -2.353104 0.032802 
H 4.12688 -1.246442 3.366406 
H 5.864497 0.070639 4.505153 
H 7.41521 1.502956 3.192821 
H 7.236654 1.550174 0.708384 
H 5.533487 0.205104 -0.434177 
H 3.102313 0.143974 -2.597575 
H 5.072202 0.077979 -4.074861 
H 6.908894 1.737854 -3.782696 
H 6.728436 3.461718 -2.000694 
H 4.777316 3.506813 -0.510179 
H -2.87758 -2.070189 6.749669 
H -4.073946 0.08491 6.447653 
H -4.267473 1.097465 4.206836 
H -1.702413 2.545056 1.799659 
H -2.168571 4.952285 2.186023 
H -4.519191 5.741726 2.408843 
H -6.941035 -3.227587 1.486039 
H -8.122844 -2.242207 -0.466214 
H -7.279721 -0.122193 -1.467883 
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H -5.288435 0.972006 -0.547955 
H -2.406976 2.165528 -1.055219 
H -3.837748 4.11116 -1.595834 
H -5.726827 3.856619 -3.197644 
H -6.143992 1.651317 -4.262585 
H -4.730152 -0.281653 -3.711852 
H -3.487815 -2.659442 -0.191108 
H -4.831121 -4.689582 -0.673214 
H -5.354997 -5.300136 -3.025757 
H -4.524676 -3.873816 -4.883995 
H -3.198077 -1.850928 -4.396152 
H -0.819939 -2.719246 -3.124912 
H 1.163563 -2.698728 -4.585839 
H 2.137077 -0.538603 -5.34483 
H 1.08305 1.59733 -4.636507 
H -0.886125 1.587371 -3.165023 
H -6.383062 4.103054 2.286803 
H -5.913262 1.71327 1.910089 
H -4.918148 -2.151767 2.387296 
H 2.844614 1.166876 2.448573 
H 3.584275 2.506242 4.386989 
H 3.896961 4.963075 4.156754 
H 3.460824 6.059487 1.968874 
H 2.739584 4.714691 0.031215 
H -0.134839 3.006228 0.51648 
H -1.717632 4.626557 -0.483426 
H -1.345431 5.458134 -2.801747 
H 0.652075 4.705368 -4.072134 
H 2.26268 3.138842 -3.040037 
H -2.011501 -2.154627 2.53996 
H -1.859709 -3.201114 4.780895 
C -3.63408 -0.417437 5.592579 
C -3.743859 0.155182 4.323548 
C -3.770574 1.967974 1.802105 
C -2.724755 2.897373 1.891957 
C -4.309841 4.690059 2.243992 
C -2.991234 4.248434 2.113589 
C -5.356731 3.770725 2.172633 
C -5.090087 2.416858 1.958672 
C -2.388378 -2.261522 4.65862 
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C -2.961059 -1.627025 5.763059 
C -4.930445 -0.52248 0.969398 
C -7.240577 -1.758893 -0.061075 
C -5.427157 -1.702831 1.542111 
C 2.907556 -2.805532 1.71663 
C 5.0042 0.843912 -3.309883 
C 4.816727 2.771045 -1.303395 
C 5.93345 2.736945 -2.139744 
C 2.798566 2.830994 1.091673 
C 3.418675 2.991733 3.431814 
C 3.590182 4.368992 3.302611 
C 3.017406 2.228448 2.334724 
C 6.034356 1.770393 -3.141778 
C 1.694729 -3.569762 3.680441 
C 2.349795 -4.801439 3.616692 
C 3.56159 -4.044004 1.661531 
C 4.130103 -2.322419 -0.85482 
C 3.96847 -3.409908 -3.020272 
C 5.331517 -3.708132 -2.98477 
C 4.67998 -0.599761 1.379802 
C 5.786121 0.111238 3.424207 
C 6.660201 0.91091 2.687438 
C 6.560609 0.938756 1.29631 
C 3.780511 1.838665 -1.455657 
C 5.584615 0.184765 0.647236 
C 3.886321 0.880729 -2.477017 
C 5.496587 -2.64203 -0.820177 
C 4.802799 -0.637835 2.776961 
C 6.093518 -3.325244 -1.880319 
C 3.371061 -2.721134 -1.964724 
C 1.165564 2.960824 -1.192753 
C 3.34717 4.98586 2.072762 
C 1.384548 3.448863 -2.485032 
C -0.852705 4.299602 -1.051256 
C -0.641816 4.766642 -2.351159 
C 0.477151 4.339815 -3.065647 
C -3.169418 -0.471377 3.210798 
C -2.484747 -1.683208 3.394474 
C 0.036327 3.392823 -0.481443 
C 2.948811 4.223449 0.976434 
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C 3.28031 -5.035618 2.604056 
C 1.965604 -2.581041 2.735137 
C -5.630218 0.043476 -0.108451 
C -3.442913 0.811543 -2.362758 
C -4.023439 3.156841 -2.076139 
C -3.210705 2.064168 -1.776207 
C -5.319234 1.772133 -3.568003 
C -4.504974 0.679334 -3.267688 
C -4.31636 -3.602816 -3.854567 
C -4.779264 -4.406498 -2.809188 
C -3.2977 -2.088117 -2.249296 
C -3.740366 -2.918042 -1.213119 
C -4.48513 -4.065538 -1.489837 
C -0.458156 0.643523 -3.48659 
C -3.577868 -2.453654 -3.576971 
C -1.013423 -0.568691 -3.053831 
C -0.413962 -1.771163 -3.459088 
C 0.713168 -1.759489 -4.281063 
C 1.25727 -0.548626 -4.709785 
C 0.664699 0.651128 -4.313119 
C -5.084408 3.012439 -2.970839 
C -6.768911 -0.572099 -0.623551 
C -6.573045 -2.314431 1.030209 
H 1.686374 -0.541006 -1.523454 
H -0.087419 -2.613372 1.13209 
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Cartesian Coordinates of 3-crst 

 

Symbol X Y Z 
Ir 1.438761 -0.167062 0.216498 
Ir -1.492448 -0.061203 0.344431 
S 0.084001 1.324685 1.463125 
S -0.09197 -1.84723 0.887842 
P -3.301287 0.97429 1.235967 
P -2.397662 -1.404039 -1.31094 
P 3.264339 -1.13127 1.087391 
P 2.356018 1.502054 -1.081705 
H 1.2619 -0.605474 3.183339 
H 0.902121 -1.547912 5.439326 
H 2.31494 -3.425725 6.255022 
H 4.109749 -4.336549 4.798031 
H 4.499041 -3.37867 2.565323 
H 2.215369 -3.133626 -0.707503 
H 3.227271 -5.002112 -1.977252 
H 5.67605 -5.403905 -1.875439 
H 7.103395 -3.949329 -0.451601 
H 6.098432 -2.1081 0.837637 
H 4.018959 0.234779 3.58214 
H 5.719806 1.931573 4.124774 
H 7.320867 2.701143 2.386664 
H 7.224361 1.712057 0.103832 
H 5.551446 -0.000678 -0.432454 
H 3.072765 -0.98851 -2.397606 
H 5.05503 -1.76916 -3.626811 
H 6.961314 -0.217232 -4.04193 
H 6.833634 2.126749 -3.224362 
H 4.868741 2.896171 -1.961571 
H -2.831035 1.752145 6.890058 
H -4.2869 3.251024 5.54492 
H -4.472626 2.937167 3.105986 
H -1.661628 3.214753 0.618307 
H -2.085355 5.503203 -0.230507 
H -4.411555 6.234398 -0.736142 
H -6.709737 -2.137562 3.070853 
H -7.970834 -2.328819 0.937822 
H -7.261171 -0.981353 -1.033738 
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H -5.31599 0.503875 -0.880648 
H -2.564119 1.310081 -2.33428 
H -4.130272 2.513957 -3.784129 
H -6.115648 1.34073 -4.732331 
H -6.469081 -1.066659 -4.223463 
H -4.903546 -2.273221 -2.771421 
H -3.344775 -2.40279 1.212065 
H -4.550171 -4.452006 1.907888 
H -5.057465 -6.222574 0.237187 
H -4.350394 -5.927222 -2.126339 
H -3.167813 -3.873431 -2.819317 
H -0.762319 -3.855853 -1.52239 
H 1.142525 -4.482738 -2.946892 
H 2.013505 -2.890221 -4.649646 
H 0.908946 -0.680047 -4.935249 
H -1.013815 -0.062025 -3.545062 
H -6.304918 4.67774 -0.332654 
H -5.886828 2.411267 0.538961 
H -4.746309 -0.660878 3.224446 
H 3.025774 2.213118 1.643159 
H 3.797555 4.297102 2.726745 
H 4.014191 6.385957 1.392932 
H 3.456856 6.365825 -1.028086 
H 2.71216 4.274103 -2.111948 
H -0.113134 2.965531 -0.884562 
H -1.768035 3.79791 -2.524529 
H -1.426597 3.376222 -4.959161 
H 0.603225 2.165848 -5.722524 
H 2.263891 1.365003 -4.081317 
H -1.704457 -0.353407 3.315895 
H -1.554833 -0.060501 5.767017 
C -3.733116 2.452458 5.062911 
C -3.836425 2.27451 3.68312 
C -3.739311 2.6427 0.605751 
C -2.675755 3.535961 0.395709 
C -4.224151 5.235467 -0.356603 
C -2.917421 4.823539 -0.078857 
C -5.286821 4.361044 -0.132699 
C -5.048607 3.073367 0.355812 
C -2.198587 0.592199 5.187226 
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C -2.914953 1.610562 5.817737 
C -4.873049 0.023332 1.178753 
C -7.114772 -1.666615 1.007542 
C -5.292205 -0.72432 2.29018 
C 2.918382 -1.911706 2.720517 
C 5.011156 -0.740844 -3.284655 
C 4.887392 1.883466 -2.34551 
C 6.009566 1.443091 -3.04945 
C 2.859373 3.08618 -0.311781 
C 3.572662 4.29523 1.666088 
C 3.691593 5.465686 0.917495 
C 3.150115 3.113904 1.05611 
C 6.079974 0.12802 -3.512119 
C 1.69347 -1.946947 4.814081 
C 2.485839 -3.000793 5.27152 
C 3.713445 -2.967439 3.188819 
C 4.08518 -2.478641 0.144244 
C 3.856905 -4.362635 -1.368573 
C 5.233217 -4.59093 -1.309541 
C 4.646251 0.000105 1.528619 
C 5.680143 1.514423 3.124325 
C 6.581528 1.943968 2.149918 
C 6.527887 1.390855 0.870392 
C 3.816385 1.013943 -2.093664 
C 5.572098 0.423902 0.563199 
C 3.88708 -0.299453 -2.587311 
C 5.463565 -2.729726 0.216695 
C 4.719295 0.550722 2.817557 
C 6.034456 -3.774766 -0.51154 
C 3.284377 -3.31413 -0.649218 
C 1.18336 2.100864 -2.365929 
C 3.380689 5.454388 -0.444707 
C 1.38007 1.887994 -3.734759 
C -0.889482 3.263246 -2.87202 
C -0.697219 3.026388 -4.236327 
C 0.440469 2.343034 -4.664472 
C -3.114231 1.257806 3.042101 
C -2.290482 0.417364 3.806179 
C 0.040936 2.799546 -1.944706 
C 2.96456 4.272687 -1.056156 
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C 3.49439 -3.51189 4.454641 
C 1.900234 -1.40689 3.544462 
C -5.609563 -0.072402 -0.012133 
C -3.590974 -0.583969 -2.459126 
C -4.297712 1.462135 -3.578442 
C -3.401806 0.77441 -2.761802 
C -5.606769 -0.546028 -3.820388 
C -4.706054 -1.235407 -3.006626 
C -4.148992 -5.150117 -1.396827 
C -4.543374 -5.316809 -0.066374 
C -3.217811 -2.972849 -0.853829 
C -3.593162 -3.162598 0.480637 
C -4.260702 -4.32445 0.870816 
C -0.561676 -1.038903 -3.413497 
C -3.488817 -3.987063 -1.788429 
C -1.05853 -1.931767 -2.455471 
C -0.422175 -3.170169 -2.288517 
C 0.670292 -3.515606 -3.082093 
C 1.15712 -2.623743 -4.038698 
C 0.537502 -1.384857 -4.200373 
C -5.409262 0.80535 -4.10716 
C -6.718425 -0.912727 -0.097465 
C -6.403939 -1.562885 2.203166 
H 1.668897 -1.092666 -1.048159 
H -1.608807 1.09049 -0.707883 
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Cartesian Coordinates of 4-up 

 

Symbol X Y Z 
Ir 1.438898 0.065387 0.19476 
Ir -1.32654 0.077042 -0.228786 
S 0.220165 1.33725 -1.622439 
S -0.132052 1.251675 1.605117 
P -3.125004 1.36008 -0.898304 
P -2.326956 -1.423972 1.190834 
P 3.134973 1.365468 1.010289 
P 2.407634 -1.407938 -1.322765 
H 2.551777 3.094799 -1.252857 
H 1.958933 5.475026 -1.472651 
H 1.790145 6.911057 0.551635 
H 2.226477 5.931933 2.793604 
H 2.841443 3.554254 3.014362 
H 1.582565 0.372065 3.296984 
H 2.125389 0.034095 5.689409 
H 4.389543 0.598295 6.54934 
H 6.103153 1.511579 4.997775 
H 5.569494 1.834457 2.613206 
H 5.067152 3.264301 -0.35017 
H 7.234212 2.86678 -1.45932 
H 8.224389 0.589503 -1.493176 
H 7.036306 -1.28722 -0.364656 
H 4.87024 -0.893142 0.737607 
H 2.141859 -2.967984 1.078677 
H 3.483785 -4.717377 2.162137 
H 5.645184 -5.444272 1.157109 
H 6.413516 -4.412465 -0.969841 
H 5.060602 -2.682585 -2.071696 
H -1.785873 6.907788 -1.431471 
H -3.182098 5.813269 -3.169414 
H -3.768518 3.429636 -2.975869 
H -1.926893 0.206963 -3.288782 
H -2.777984 -0.291773 -5.555954 
H -5.171215 0.095022 -6.105428 
H -6.261111 3.407399 2.399545 
H -7.669956 1.369473 2.585074 
H -7.154906 -0.615119 1.168409 
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H -5.25164 -0.563208 -0.383977 
H -2.74583 -2.45934 -1.476276 
H -4.512203 -3.798137 -2.554302 
H -6.510504 -4.513377 -1.247928 
H -6.690109 -3.893392 1.153447 
H -4.924583 -2.567351 2.229729 
H -2.938332 1.239686 2.245708 
H -3.914131 2.040793 4.366632 
H -4.46413 0.422015 6.173685 
H -4.024141 -2.001135 5.830624 
H -3.073519 -2.796647 3.699845 
H -0.15169 -1.263215 3.051999 
H 1.421232 -2.916983 4.019817 
H 1.311709 -5.303475 3.309718 
H -0.342274 -6.00301 1.596138 
H -1.92664 -4.357787 0.653771 
H -6.69502 1.025796 -4.375874 
H -5.840952 1.560205 -2.129192 
H -4.331658 3.44948 0.867332 
H 3.432852 1.222136 -2.020901 
H 4.757066 2.096707 -3.918002 
H 5.39772 0.581343 -5.784234 
H 4.696396 -1.802172 -5.730911 
H 3.385988 -2.667352 -3.826904 
H 0.860664 -0.866569 -3.737949 
H -1.064106 -1.976377 -4.805797 
H -1.973935 -4.087765 -3.862753 
H -0.931462 -5.076923 -1.833004 
H 0.993506 -3.980584 -0.767626 
H -1.505637 3.178182 0.683218 
H -0.957235 5.569408 0.5055 
C -2.831757 5.244433 -2.314906 
C -3.165481 3.892728 -2.203822 
C -3.821026 0.912191 -2.542632 
C -2.967839 0.39079 -3.527248 
C -4.794828 0.324423 -5.113871 
C -3.452283 0.103328 -4.80324 
C -5.650664 0.846951 -4.143725 
C -5.166044 1.145646 -2.86931 
C -1.590749 5.114467 -0.247887 
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C -2.046526 5.858704 -1.338374 
C -4.633461 1.435905 0.148124 
C -6.830672 1.391045 1.898385 
C -4.944825 2.557718 0.928043 
C 2.773006 3.15926 0.895939 
C 3.828959 -4.283334 1.230427 
C 4.69408 -3.136713 -1.159489 
C 5.469759 -4.11065 -0.527101 
C 3.360442 -0.786161 -2.760898 
C 4.469056 1.051623 -3.89859 
C 4.827027 0.20176 -4.943233 
C 3.732145 0.559373 -2.819951 
C 5.039411 -4.689684 0.666512 
C 2.165118 5.061602 -0.491585 
C 2.065324 5.865914 0.647 
C 2.667589 3.971697 2.029661 
C 3.540614 1.107555 2.784215 
C 2.883831 0.420878 5.017505 
C 4.152657 0.743401 5.500664 
C 4.801295 1.209118 0.252433 
C 6.716842 2.040674 -0.983059 
C 7.275169 0.762962 -0.998351 
C 6.609519 -0.290434 -0.367078 
C 3.476363 -2.721856 -0.601507 
C 5.383727 -0.068047 0.254684 
C 3.059451 -3.302401 0.607869 
C 4.811635 1.439786 3.28066 
C 5.488729 2.266033 -0.355649 
C 5.11527 1.256793 4.629577 
C 2.57707 0.599598 3.667406 
C 1.086619 -2.355914 -2.189558 
C 4.43593 -1.140272 -4.912404 
C 0.560983 -3.540323 -1.65802 
C -0.609245 -2.419993 -3.926468 
C -1.120864 -3.605423 -3.396885 
C -0.534498 -4.160939 -2.258984 
C -2.713823 3.139937 -1.111188 
C -1.918302 3.763635 -0.135414 
C 0.484115 -1.797122 -3.326164 
C 3.704513 -1.629692 -3.832154 
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C 2.313185 5.317253 1.904233 
C 2.51057 3.718547 -0.365617 
C -5.45691 0.302772 0.234277 
C -3.684513 -2.438981 0.463011 
C -4.600959 -3.543843 -1.503019 
C -3.595007 -2.794215 -0.892896 
C -5.820838 -3.59407 0.577157 
C -4.810243 -2.852191 1.19121 
C -3.811697 -1.290473 5.038887 
C -4.054629 0.071561 5.232365 
C -3.002545 -0.83417 2.792078 
C -3.218189 0.529192 3.010336 
C -3.750562 0.979111 4.219107 
C -1.196681 -4.037569 1.388699 
C -3.283954 -1.739733 3.829915 
C -1.160857 -2.703984 1.808194 
C -0.202183 -2.307034 2.755342 
C 0.684322 -3.238013 3.291074 
C 0.630427 -4.574751 2.882681 
C -0.300295 -4.969167 1.922445 
C -5.720518 -3.942709 -0.771262 
C -6.542575 0.277868 1.106705 
C -6.036359 2.532916 1.798267 
H 1.79527 -0.887389 1.389041 
H -1.622445 -0.875148 -1.471441 
H 0.140379 2.528004 -1.004449 
H 0.046639 -1.022292 -0.043178 
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Cartesian Coordinates of 4-do  

 

Symbol X Y Z 
Ir 1.453946 0.081748 0.159679 
Ir -1.321348 0.084955 -0.239159 
S 0.204738 1.344682 -1.651443 
S -0.103809 1.344234 1.517902 
P -3.142886 1.34722 -0.908747 
P -2.348104 -1.362038 1.215464 
P 3.194765 1.311859 1.003523 
P 2.412881 -1.404697 -1.352876 
H 1.987999 3.138832 -0.899819 
H 1.708661 5.584346 -0.975182 
H 2.415341 6.983134 0.963403 
H 3.429943 5.899699 2.955706 
H 3.766576 3.456973 3.0056 
H 1.559254 0.501578 3.277433 
H 2.071821 -0.033141 5.63787 
H 4.416839 0.068003 6.465288 
H 6.241487 0.727325 4.911759 
H 5.736052 1.258879 2.559263 
H 5.01154 3.237391 -0.420795 
H 7.118882 2.900332 -1.659402 
H 8.153939 0.64568 -1.779271 
H 7.072926 -1.269387 -0.609122 
H 4.972858 -0.933399 0.630705 
H 2.206228 -2.917152 1.069884 
H 3.55174 -4.665814 2.150317 
H 5.685554 -5.425446 1.108906 
H 6.417145 -4.427506 -1.046169 
H 5.05711 -2.702637 -2.143148 
H -1.908492 6.802697 -2.138298 
H -3.536935 5.564709 -3.548045 
H -4.063626 3.209309 -3.059594 
H -2.225046 -0.193736 -3.208045 
H -3.320671 -1.052898 -5.243335 
H -5.753877 -0.678938 -5.606652 
H -5.690364 3.869762 2.546208 
H -7.277278 2.011713 3.005085 
H -7.128197 -0.087288 1.673289 
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H -5.415069 -0.327195 -0.06651 
H -3.0563 -2.180962 -1.473339 
H -5.034076 -3.242341 -2.488465 
H -6.96068 -3.917308 -1.058214 
H -6.86096 -3.526719 1.394349 
H -4.90138 -2.441491 2.399564 
H -2.825378 1.318907 2.302526 
H -3.650238 2.144268 4.473663 
H -4.13152 0.542612 6.316013 
H -3.773856 -1.891715 5.953082 
H -2.97082 -2.712877 3.773194 
H -0.008961 -1.358172 2.862966 
H 1.511353 -3.121076 3.709572 
H 1.14513 -5.499777 3.058878 
H -0.752693 -6.092627 1.573917 
H -2.295181 -4.333007 0.765779 
H -7.058423 0.617061 -3.934296 
H -5.95966 1.50154 -1.918032 
H -3.948322 3.618924 0.825848 
H 3.296386 1.269318 -2.074869 
H 4.573173 2.192872 -3.977629 
H 5.3087 0.697852 -5.824574 
H 4.743989 -1.721334 -5.749831 
H 3.474481 -2.639447 -3.844614 
H 1.07179 -1.169031 -3.995428 
H -0.947515 -2.209367 -4.933479 
H -2.117728 -4.0212 -3.693001 
H -1.222806 -4.778062 -1.499236 
H 0.759552 -3.714289 -0.532327 
H -1.250723 3.261123 0.208944 
H -0.777758 5.634016 -0.247442 
C -3.050498 5.069452 -2.714337 
C -3.347776 3.733718 -2.436969 
C -4.009472 0.70944 -2.406904 
C -3.279358 -0.003235 -3.370271 
C -5.267057 -0.286077 -4.720414 
C -3.902703 -0.497551 -4.515327 
C -5.999572 0.439132 -3.780687 
C -5.375078 0.938505 -2.636521 
C -1.502123 5.111454 -0.862803 
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C -2.133235 5.762865 -1.924441 
C -4.534358 1.616954 0.265739 
C -6.519703 1.905011 2.236394 
C -4.640226 2.804345 1.004473 
C 2.932905 3.126404 1.040696 
C 3.880093 -4.249545 1.204118 
C 4.70204 -3.144558 -1.220979 
C 5.483978 -4.114161 -0.589923 
C 3.341519 -0.753487 -2.793319 
C 4.346482 1.133148 -3.947629 
C 4.757764 0.294504 -4.98174 
C 3.635405 0.61215 -2.864919 
C 5.074444 -4.673962 0.620671 
C 2.168425 5.125582 -0.105845 
C 2.561264 5.907896 0.983399 
C 3.323935 3.916618 2.129163 
C 3.61253 0.899347 2.746294 
C 2.877396 0.240691 4.964672 
C 4.192889 0.301813 5.429717 
C 4.831363 1.172636 0.179612 
C 6.649066 2.058118 -1.162665 
C 7.231903 0.793357 -1.227477 
C 6.626763 -0.281586 -0.571901 
C 3.498419 -2.713543 -0.644903 
C 5.437348 -0.09236 0.126962 
C 3.106385 -3.271476 0.582417 
C 4.929688 0.971929 3.225039 
C 5.456789 2.249847 -0.460035 
C 5.217375 0.671442 4.558005 
C 2.585934 0.535345 3.632781 
C 1.075961 -2.362158 -2.192747 
C 4.444236 -1.067079 -4.938337 
C 0.413483 -3.391122 -1.507554 
C -0.571584 -2.545683 -3.972584 
C -1.224277 -3.564289 -3.280564 
C -0.721128 -3.990121 -2.04986 
C -2.72157 3.075632 -1.370154 
C -1.783257 3.772859 -0.591018 
C 0.572349 -1.952083 -3.435427 
C 3.737865 -1.586336 -3.85564 
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C 3.133721 5.300216 2.100973 
C 2.341913 3.743315 -0.072398 
C -5.455938 0.587364 0.511734 
C -3.817358 -2.249668 0.5387 
C -5.000155 -3.093343 -1.414664 
C -3.877844 -2.495123 -0.842252 
C -6.025392 -3.243041 0.76318 
C -4.90453 -2.640614 1.335543 
C -3.590532 -1.187215 5.14876 
C -3.787243 0.180576 5.35287 
C -2.903699 -0.753765 2.856788 
C -3.072751 0.614891 3.083826 
C -3.521054 1.078924 4.320968 
C -1.457085 -4.064624 1.399599 
C -3.146142 -1.650698 3.911795 
C -1.253733 -2.729735 1.760607 
C -0.17508 -2.398242 2.597256 
C 0.68067 -3.391797 3.065736 
C 0.477449 -4.725592 2.695328 
C -0.587808 -5.059145 1.859565 
C -6.08062 -3.465128 -0.613946 
C -6.4361 0.727776 1.492022 
C -5.62587 2.945264 1.982502 
H 1.788818 -0.853852 1.368644 
H -1.599864 -0.929704 -1.435125 
H 0.317869 0.521804 -2.707871 
H 0.04949 -0.997986 -0.044845 
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Cartesian Coordinates of 4*-up 

 

Symbol X Y Z 
Ir -1.258295 -0.219546 -0.175219 
Ir 1.484437 -0.432446 -0.829353 
S -0.137524 0.575958 -2.367974 
S -0.132929 -2.196911 -0.97886 
P 2.455752 -1.955776 0.588169 
P 2.850259 1.469633 -0.818242 
P -3.290841 -1.165242 -0.842379 
P -1.991701 1.658395 0.96517 
H -2.378712 -0.609323 -3.563398 
H -2.232528 -1.947692 -5.62083 
H -2.921603 -4.338892 -5.60708 
H -3.780587 -5.354525 -3.508443 
H -3.965256 -4.009441 -1.460402 
H -2.026533 -2.916042 1.114902 
H -2.889124 -4.518186 2.770773 
H -5.342407 -4.884299 3.010348 
H -6.915732 -3.65295 1.531193 
H -6.057383 -2.061181 -0.139682 
H -4.489968 -0.036937 -3.354673 
H -6.187016 1.679028 -3.754647 
H -7.428807 2.692257 -1.851566 
H -6.965905 1.900691 0.466801 
H -5.281782 0.172661 0.868451 
H -2.726066 -0.681867 2.551125 
H -4.586536 -1.229775 4.051827 
H -6.360765 0.460868 4.516898 
H -6.212942 2.707662 3.46187 
H -4.37316 3.242578 1.933524 
H -1.10252 -3.514146 4.806613 
H -0.202101 -5.237174 3.252785 
H 1.324563 -4.589012 1.432181 
H 2.092102 -3.184842 -2.101419 
H 2.931025 -5.275601 -3.108959 
H 4.338127 -6.832305 -1.77644 
H 5.459717 -1.301103 4.562669 
H 7.371856 -0.539238 3.173682 
H 7.135935 -0.45075 0.69539 
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H 5.004318 -1.086441 -0.366812 
H 3.379736 0.451964 -3.451668 
H 5.423491 0.03925 -4.772468 
H 7.66011 0.541614 -3.804012 
H 7.821628 1.490382 -1.513133 
H 5.78358 1.916704 -0.199118 
H 2.727205 0.612966 1.964005 
H 3.693708 1.482788 4.059929 
H 4.883678 3.670857 4.063001 
H 5.052132 4.978145 1.955375 
H 4.133991 4.068215 -0.145464 
H 0.269763 2.724703 -0.7111 
H -0.695088 4.791589 -1.654256 
H 0.657426 6.196933 -3.201882 
H 2.972537 5.507818 -3.783215 
H 3.941593 3.460003 -2.811633 
H 4.908426 -6.265168 0.577736 
H 4.098822 -4.165397 1.574287 
H 3.323891 -1.931524 3.500236 
H -2.729867 1.941886 -1.784871 
H -3.655116 3.779926 -3.15223 
H -3.972041 6.037191 -2.152884 
H -3.368366 6.424739 0.227008 
H -2.486145 4.578986 1.599337 
H -0.142664 4.065854 0.958653 
H 1.454596 4.917945 2.603701 
H 1.745007 3.772019 4.786919 
H 0.45231 1.699811 5.267604 
H -1.137701 0.824208 3.607502 
H 1.03265 -0.47771 2.65969 
H -0.453481 -1.134566 4.506966 
C 0.084376 -4.196723 3.139749 
C 0.959921 -3.832555 2.115985 
C 3.029965 -3.522421 -0.192687 
C 2.71294 -3.851356 -1.516308 
C 3.972572 -5.911754 -1.333696 
C 3.184642 -5.038376 -2.081599 
C 4.293014 -5.594337 -0.01193 
C 3.830131 -4.407093 0.551257 
C -0.058012 -1.894129 3.840561 
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C -0.423327 -3.230556 4.009427 
C 4.006374 -1.5345 1.490819 
C 6.436245 -0.822492 2.703717 
C 4.152072 -1.604774 2.881773 
C -3.211563 -2.197808 -2.362663 
C -4.532423 -0.239374 3.613028 
C -4.386804 2.27438 2.416317 
C -5.44528 1.964935 3.27185 
C -2.573433 3.113473 0.008619 
C -3.405218 3.95901 -2.112941 
C -3.58118 5.223078 -1.551945 
C -2.895414 2.91479 -1.339917 
C -5.527726 0.705073 3.866625 
C -2.621149 -2.399348 -4.714498 
C -3.00576 -3.741703 -4.705568 
C -3.594449 -3.544463 -2.365466 
C -3.98156 -2.342869 0.389786 
C -3.588695 -3.974496 2.145716 
C -4.963235 -4.180993 2.276284 
C -4.710313 -0.036352 -1.20263 
C -5.979122 1.36489 -2.737281 
C -6.680713 1.927835 -1.671937 
C -6.42117 1.487339 -0.374822 
C -3.388338 1.329701 2.139697 
C -5.451697 0.512547 -0.144107 
C -3.471603 0.074008 2.76365 
C -5.359004 -2.583231 0.504284 
C -5.006535 0.391411 -2.50632 
C -5.846823 -3.488773 1.447306 
C -3.097956 -3.063866 1.209998 
C -0.7737 2.37774 2.155758 
C -3.243385 5.441367 -0.213279 
C -0.574277 1.721466 3.380451 
C 0.875238 4.031343 2.835781 
C 1.043525 3.383719 4.057021 
C 0.322669 2.218903 4.323399 
C 1.338083 -2.49546 1.943718 
C 0.807095 -1.527957 2.810022 
C -0.025108 3.533604 1.89306 
C -2.746491 4.39474 0.562277 
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C -3.488687 -4.310176 -3.529071 
C -2.714574 -1.639735 -3.551477 
C 5.100674 -1.128691 0.713306 
C 4.4315 1.223586 -1.731584 
C 5.504827 0.453827 -3.773641 
C 4.35083 0.690137 -3.029861 
C 6.851147 1.26823 -1.944576 
C 5.693555 1.516093 -1.201374 
C 4.559723 4.01144 1.958361 
C 4.460414 3.278218 3.14432 
C 3.406815 2.242157 0.755172 
C 3.261488 1.550481 1.958666 
C 3.801332 2.051002 3.143228 
C 2.929064 3.746232 -2.550117 
C 4.039005 3.497524 0.772248 
C 2.178749 2.95704 -1.668591 
C 0.869397 3.349434 -1.361552 
C 0.323444 4.511367 -1.900669 
C 1.081483 5.295201 -2.773052 
C 2.380506 4.907674 -3.100373 
C 6.760759 0.736573 -3.229801 
C 6.305083 -0.772065 1.314229 
C 5.360716 -1.245972 3.483572 
H -1.400463 -0.92241 1.211514 
H 2.453609 -0.977747 -1.950987 
H -0.334576 -0.584077 -3.017029 
H 0.289791 0.248519 0.472226 
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Cartesian Coordinates of 4*-do 

 

Symbol X Y Z 
Ir 1.251748 0.278753 -0.059611 
Ir -1.525843 0.487134 -0.738104 
S 0.175982 -0.437687 -2.25719 
S 0.08356 2.251216 -0.774816 
P -2.421954 1.925767 0.807608 
P -2.961424 -1.364842 -0.913323 
P 3.248129 1.23022 -0.849003 
P 2.022526 -1.629064 0.985512 
H 1.564095 1.44011 -3.251339 
H 1.444626 3.044547 -5.104038 
H 2.876079 5.082141 -5.094302 
H 4.442125 5.468332 -3.203362 
H 4.595994 3.847445 -1.369054 
H 2.428361 2.78614 1.423296 
H 3.627903 4.103967 3.135679 
H 6.113871 4.214395 3.115264 
H 7.380369 3.041473 1.327263 
H 6.185311 1.755234 -0.399795 
H 3.599052 0.233347 -3.58988 
H 4.961025 -1.557855 -4.571842 
H 6.585269 -2.816327 -3.166308 
H 6.83998 -2.221421 -0.761318 
H 5.493872 -0.424375 0.218135 
H 3.139513 0.46058 2.613442 
H 5.314738 0.820091 3.716827 
H 7.087728 -0.926649 3.576184 
H 6.644148 -3.029252 2.328595 
H 4.484404 -3.366783 1.191667 
H 1.332445 1.765991 5.103229 
H 1.091533 3.847529 3.768372 
H -0.564527 3.968341 1.938856 
H -2.262232 3.356981 -1.790847 
H -2.794434 5.677838 -2.449846 
H -3.507163 7.331966 -0.736635 
H -5.956911 1.39789 4.338001 
H -7.739921 0.904944 2.680528 
H -7.199507 0.909228 0.248797 
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H -4.896416 1.364878 -0.504425 
H -3.444714 0.130315 -3.363034 
H -5.459221 0.687688 -4.66812 
H -7.701365 -0.062134 -3.890723 
H -7.88927 -1.413566 -1.812972 
H -5.882798 -1.997069 -0.524485 
H -3.636829 -0.593494 1.816103 
H -4.813985 -1.693761 3.665825 
H -5.489542 -4.088374 3.460958 
H -4.959192 -5.333108 1.374649 
H -3.83311 -4.199577 -0.49744 
H -1.030042 -3.41865 -0.20552 
H 0.103811 -5.19741 -1.445934 
H -0.422678 -5.587745 -3.847754 
H -2.122487 -4.166454 -4.975701 
H -3.277645 -2.386413 -3.731855 
H -3.715802 6.631542 1.639313 
H -3.230441 4.303535 2.290341 
H -3.647416 1.844779 3.584086 
H 2.718877 -2.061719 -1.78013 
H 3.282958 -4.05478 -3.115243 
H 3.120348 -6.32577 -2.100891 
H 2.365312 -6.568004 0.255069 
H 1.821202 -4.569092 1.596692 
H -0.849261 -2.058537 1.355642 
H -2.197466 -3.104269 3.130038 
H -1.138617 -3.772791 5.277023 
H 1.308592 -3.444079 5.590229 
H 2.674131 -2.515022 3.773001 
H -1.803799 -0.052116 2.824425 
H -0.142782 -0.186124 4.620411 
C 0.44414 2.998532 3.573831 
C -0.506404 3.078969 2.554517 
C -2.7036 3.666502 0.292903 
C -2.596484 4.066388 -1.044142 
C -3.287606 6.309096 -0.449635 
C -2.889763 5.380858 -1.411195 
C -3.402587 5.917036 0.885744 
C -3.121476 4.602359 1.252364 
C -0.253519 0.739351 4.064844 
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C 0.577935 1.830014 4.326017 
C -4.10773 1.624505 1.486266 
C -6.729381 1.114211 2.346431 
C -4.421469 1.64498 2.851331 
C 3.116631 2.496675 -2.185575 
C 5.132839 -0.106232 3.183189 
C 4.652162 -2.456718 1.755067 
C 5.879421 -2.262297 2.392002 
C 2.250349 -3.168866 0.006834 
C 2.963513 -4.175515 -2.086249 
C 2.871356 -5.446098 -1.516664 
C 2.649309 -3.045431 -1.331018 
C 6.127428 -1.082894 3.096606 
C 2.147077 3.216342 -4.295849 
C 2.945215 4.360526 -4.287082 
C 3.910578 3.652545 -2.184358 
C 4.221345 2.146887 0.409697 
C 4.191201 3.578644 2.371846 
C 5.58624 3.643291 2.358591 
C 4.432533 0.038182 -1.6044 
C 5.07649 -1.316405 -3.520568 
C 5.990331 -2.01927 -2.733542 
C 6.135083 -1.685457 -1.387681 
C 3.657203 -1.471521 1.816054 
C 5.365579 -0.664864 -0.828902 
C 3.904834 -0.304176 2.554039 
C 5.619648 2.246956 0.383287 
C 4.304625 -0.297456 -2.962476 
C 6.297687 2.981916 1.356928 
C 3.512353 2.839229 1.403924 
C 1.0204 -2.248228 2.407455 
C 2.449001 -5.582871 -0.191607 
C 1.608325 -2.63105 3.622784 
C -1.133468 -2.969868 3.276678 
C -0.537198 -3.345176 4.481926 
C 0.833869 -3.16401 4.655826 
C -1.343938 1.990434 2.287033 
C -1.206117 0.823342 3.052196 
C -0.364503 -2.408158 2.259101 
C 2.137325 -4.45192 0.565707 
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C 3.823633 4.57737 -3.226782 
C 2.223887 2.297168 -3.251053 
C -5.128492 1.377242 0.555874 
C -4.506793 -0.993504 -1.854805 
C -5.554011 0.097195 -3.763427 
C -4.413545 -0.227575 -3.030691 
C -6.917019 -1.082453 -2.162598 
C -5.773733 -1.419722 -1.434021 
C -4.67739 -4.290403 1.472914 
C -4.973538 -3.591586 2.646379 
C -3.651125 -2.300741 0.520248 
C -3.928132 -1.625227 1.711958 
C -4.59735 -2.253991 2.763089 
C -2.53927 -2.993432 -3.222558 
C -4.03159 -3.650277 0.415295 
C -2.243432 -2.761878 -1.874739 
C -1.283029 -3.575408 -1.247793 
C -0.638874 -4.590465 -1.949314 
C -0.933427 -4.804874 -3.297725 
C -1.884897 -4.006463 -3.929562 
C -6.812196 -0.324822 -3.327868 
C -6.42885 1.118713 0.982286 
C -5.726704 1.385818 3.277655 
H 1.445909 0.931661 1.355944 
H -2.463775 1.144412 -1.819365 
H 0.069608 -1.77007 -2.134518 
H -0.291739 -0.219323 0.549972 

 

 

 

 

 

 

 

 

 




