
THREE-DIMENSIONAL HYBRID GRID GENERATOR AND UNSTRUCTURED

FLOW SOLVER FOR COMPRESSORS AND TURBINES

A Dissertation

by

KYUSUP KIM

Submitted to the Office of Graduate Studies of
Texas A&M University

in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

December 2003

Major Subject: Aerospace Engineering

THREE-DIMENSIONAL HYBRID GRID GENERATOR AND UNSTRUCTURED

FLOW SOLVER FOR COMPRESSORS AND TURBINES

A Dissertation

by

KYUSUP KIM

Submitted to Texas A&M University
in partial fulfillment of the requirements

for the degree of

DOCTOR OF PHILOSOPHY

Approved as to style and content by:

Paul G. A. Cizmas
(Chair of Committee)

Leland A. Carlson
(Member)

Othon K. Rediniotis
(Member)

David L. Rhode
(Member)

Walter E. Haisler
(Head of Department)

December 2003

Major Subject: Aerospace Engineering

iii

ABSTRACT

Three-dimensional Hybrid Grid Generator and Unstructured Flow Solver for

Compressors and Turbines. (December 2003)

Kyusup Kim, M.S., Texas A&M University

Chair of Advisory Committee: Dr. Paul Cizmas

A numerical method for the simulation of compressible turbulent flows is pre-

sented. This method includes a novel hybrid grid generation for airfoil cascades and

an unstructured mesh flow solver. The mesh tool incorporates a mapping technique

and a grid smoothing method. The mapping technique is used to build an initial vol-

ume mesh and the grid smoothing method is used to improve the quality of the initial

mesh. The grid smoothing is based on the optimization of mesh-quality parameters.

The further improvement of the smoothed mesh is achieved by an edge-swapping and

node-insertion technique.

The unstructured flow solver is developed for a hybrid grid. This flow solver uses

a rotational frame of reference. The convective and viscous fluxes are numerically

solved by an upwind scheme and an averaged nodal gradient. A higher-order spatial

accuracy is achieved by a piece-wise linear reconstruction. An explicit multi-stage

method is employed for integration in time. The Menter’s k−ω model is implemented

to simulate the turbulence effects.

The flow solver is validated against the analytical and experimental results. A

parametric study is performed for a high speed centrifugal compressor.

iv

To my family

v

ACKNOWLEDGMENTS

I thank my adviser Dr. Paul Cizmas for his guidance. He offered me invaluable

insight and timely advice even while busy with other students. His advice was not

limited to academic matters only, but included wisdom. Thank you.

I also would like to thank Dr. David Darmofal. He was the first mentor in my

graduate study and introduced me the exciting world of CFD. Many lessons he has

given to me on the unstructured meshes me were invaluable during the present study.

My many thanks must go to Dr. Zhenxue Han, Dr. Dragos Isvoranu, and Dr.

Horia Flitan. They provided me with countless suggestions and constructive criticism,

which in many ways helped my work. Dr. Han provided me with a base code for flow

simulation.

I would like to thank my committee members, Dr. Leland Carlson, Dr. Othon

Rediniotis, and Dr. David Rhode for their support during the course of my work.

Friends in our CFD group have been of great help to me. Jason Guarnieri im-

plemented sub-menu windows in GUI programming and also provided me with the

graphics files used in GUI windows. Steven Chambers found many errors in the draft

and helped me to correct them.

Finally, I am indebted so much to my family who have supported me for a long

time and waited patiently through the course of my research.

vi

TABLE OF CONTENTS

CHAPTER Page

I INTRODUCTION . 1

A. Statement of work . 1

B. Mesh generation . 1

C. Flow solver . 5

D. Original contributions of the present work 8

E. Outline . 9

II PHYSICAL MODEL . 10

A. The Navier-Stokes equations 10

B. Reynolds-averaged Navier-Stokes equations 12

1. Nondimensional form 15

C. Turbulence model . 17

1. The k-ω model . 20

III NUMERICAL METHOD . 23

A. Hybrid mesh generation 23

1. Introduction . 23

2. Mapping . 25

3. Mesh smoothing . 26

a. Sub-mesh . 27

b. Centroid smoothing 29

c. Optimization-based smoothing 32

4. Edge swapping and node insertion 37

B. Flow solver . 39

1. Spatial discretization 41

a. Introduction . 41

b. Integral formulation 47

c. The Navier-Stokes equations in the rotational

frame of reference 47

d. Semi-discrete form of the Navier-Stokes equations 50

e. Inviscid flux . 53

f. Gradient computation 56

g. Piecewise linear reconstruction 62

vii

CHAPTER Page

h. Viscous flux . 64

2. Temporal discretization 66

a. Implicit residual smoothing 68

3. Boundary conditions 69

C. Implementation of turbulence model 76

D. Parallel implementation 80

E. Graphical user interface 84

IV RESULTS . 89

A. Hybrid mesh generation for an axial turbine rotor 90

B. Supersonic inviscid vortex flow in a circular channel 102

C. Transonic channel flow over a bump 108

D. Laminar boundary layer flow over a semi-infinite flat plate 112

E. Turbulent boundary layer flow over a semi-infinite flat plate 120

F. Honeywell high speed centrifugal compressor 124

V CONCLUSION AND FUTURE WORK 132

REFERENCES . 135

VITA . 148

viii

LIST OF TABLES

TABLE Page

I Nondimensional variables. 17

II Minimum and maximum angle (MS, ES and NI denote mesh

smoothing, edge swapping, and node insertion, respectively). 94

III Minimum of the quality metric τ (MS, ES and NI denote mesh

smoothing, edge swapping, and node insertion, respectively). 94

IV Comparison of transonic channel flow. 111

V Maximum Mach number variation as a function of wheel speed. . . . 126

VI Size of computational grids. 129

VII Parameter variation. 130

ix

LIST OF FIGURES

FIGURE Page

1 Boundaries of background meshes with nodes in the lower inlet corner. 26

2 Sub-mesh for node N0. 28

3 Types of sub-mesh boundary. 30

4 Shadow at concave corner: intersection of half-spaces a) and b). . . . 31

5 Types of kernel. 31

6 Centroid dual cell. 33

7 Two-dimensional example of median and centroid dual cell for a

node N0. Solid lines denote the boundary of dual cells and thick

dotted lines denote the boundary of the first-order stencil S1N0
of

node N0. 43

8 Median-dual cells. The volume contributions to a median-dual

cell for a vertex i are shown. Sub-cells are defined by the surface

crossing the cell centroid cc, face centroid fc and mid-edge points

i-j. 44

9 Face area contributions (shaded area) from two hexahedral cells

to an edge eij. 45

10 First-order stencil for 2-D Green-Gauss gradient computation. 58

11 Example of one-to-two mesh partitions. (a) The shaded area is

the buffer layer (B1∩B2) between the block mesh B1 and B2. (b)

The solid lines denote the slave data points (BS
1 and BS

2) and the

dotted lines denote the master data points (BM
1 and BM

2). 83

12 GUI: Opening splash. 85

13 GUI: Main panel. 85

x

FIGURE Page

14 GUI: Flow model panel. 86

15 GUI: Flow model panel. Inviscid option turns off laminar/turbulent

options. 86

16 GUI: Boundary condition panel. 86

17 GUI: Solver control panel. 87

18 GUI: Input/Output control panel. 87

19 GUI: Geometry panel. 87

20 GUI: Execution control panel. 88

21 Test case airfoil. 91

22 Variation of airfoil cross sections. 92

23 Number of cells vs. quality measure τ 95

24 Source mesh at the hub. 96

25 Hub layer. 96

26 Layer at 20% span from the hub. 97

27 Layer at 40% span from the hub. 98

28 Layer at 60% span from the hub. 99

29 Layer at 80% span from the hub. 100

30 Tip layer. 101

31 Structured mesh for supersonic vortex case. 103

32 Pressure contour of constant reconstruction case on a fixed frame

of reference. Ui = 2.25, ρi = 1, pi = 1/γ, ri = 1, and ro = 1.384. . . . 106

33 Pressure contour of linear reconstruction case on a rotating frame

of reference. Ui = 2.25, ρi = 1, pi = 1/γ, ri = 1, and ro = 1.384. . . . 107

xi

FIGURE Page

34 Pressure error of constant reconstruction case. 107

35 Schematic of transonic flow over a bump. 109

36 (71× 31× 2) mesh for transonic flow over a bump. 110

37 Iso-Mach contour plot of transonic flow over a bump. 111

38 Schematic of setup of Blasius boundary layer. 113

39 Closeup view of mesh for Blasius boundary layer. The plate lead-

ing edge is placed at x = 0. 116

40 Constant reconstruction case. U velocity profile of Blasius bound-

ary layer, Rex = 120000. Line denotes the Blasius solution and

symbols denote the computed value. 117

41 Linear reconstruction case. U velocity profile of Blasius bound-

ary layer, Rex = 120000. Line denotes the Blasius solution and

symbols denote the computed value. 118

42 Comparison of skin friction coefficients. CR=Constant Recon-

struction, LR=Linear Reconstruction, and BS=Blasius Solution. . . . 119

43 Mesh for turbulent flow over a semi-infinite plate. 122

44 Tangential velocity profile for the k − ω model. The computed

velocities are sampled at Rex = 1.0498×106. The experiment data

by Wieghardt & Tillman result is sampled at Rex = 1.0643× 106. . 123

45 Comparison of the computed skin friction coefficients, Cf , and

the experiment data by Wieghardt and Tillmann. The computed

result is based on the k − ω model. 123

46 Detail of the Honeywell centrifugal compressor impeller geometry. . . 125

47 Computational grid. 126

48 Meridional section through the grid on the back side of the impeller. 126

49 Leakage pressure location. 127

xii

FIGURE Page

50 Grid convergence test. 128

51 Compressor map. Lines with symbols denote experimental data.

Open triangles denote the computed results. 130

52 Variation of axial thrust load with operating point. 131

53 Variation of leakage mass flow rate with operating point. 131

1

CHAPTER I

INTRODUCTION

A. Statement of work

The goals of the present work are: 1) to develop a versatile numerical tool for the

simulation of compressible turbulent flows, and 2) to investigate the physics of tur-

bomachinery flows. To achieve the goals, the following numerical algorithms have

been developed: 1) a novel efficient hybrid mesh generator for airfoil cascades, and 2)

an unstructured flow solver. The flow solver incorporates many elements of modern

developments of Computational Fluid Dynamics (CFD). The usability of the flow

solver is enhanced by addition of a Graphical User Interface (GUI). The flow solver

is parallelized such that it can be applied to large problems for fast turnaround time.

B. Mesh generation

A mesh can be structured or unstructured, depending on the arrangement of the

neighboring points. For a structured mesh, the pattern of the points arrangement is

regular and the solution algorithms can take advantage of these regular patterns. A

structured mesh is relatively simple to generate compared to an unstructured mesh

and the inherent pattern in the mesh makes the solution algorithms simple to im-

plement. A limitation of the structured mesh is that the localized enrichment of

the mesh points at certain regions, such as a high curvature boundary region and a

region of steep solution gradient, cannot be achieved without disrupting the natural

structured pattern of the mesh. The selective local enrichments are necessary for an

The journal model is AIAA Journal.

2

efficient use of computational resources. This limits the applications of structured

meshes to relatively simple geometries.

An unstructured mesh can be characterized by an irregular stencil pattern. Un-

like a structured mesh, the repeated regular stencil patterns are not required for

an unstructured mesh and this makes the unstructured mesh suitable for complex

geometries and local adaptation. Unstructured mesh generation methods are much

more expensive to implement than the methods for structured meshes. In addition,

an unstructured mesh requires the explicit description of the irregular patterns. The

required information is not only limited to the locations of nodes and the connectivity

among nodes via edges, but also the cell faces and the volume cells. The most pro-

nounced added cost is the increased storage requirement. Additional hidden run time

cost is due to the increased access time to look up the connectivity table. The cost of

the indirect references can be high because of the cache miss and the relatively slow

memory access time [1]. Cache miss occurs when the data accesses are not localized

and a memory access in a typical computer is approximately 100 times slower than a

single CPU operation [2].

In summary, structured meshes and unstructured meshes have their own merits

and limitations. The present work attempts to combine the simplicity of a structured

mesh and the generality of a unstructured mesh into an efficient mesh generation

method. Next paragraphs present a brief review of mesh generation methods related

to this study.

Mixed element meshes are widely used in viscous CFD problems because they

allow better control of the cell sizes in the viscous region [3]. Prism cells for the

viscous region and tetrahedral cells for the inviscid region are a common combination

for a three-dimensional (3-D) mesh. The advancing-layers method is a popular way

to cluster the cells in the viscous region [4]. However, these advanced methods in

3

unstructured mesh generation techniques require high costs in their implementation.

Mapping, which is often referred as 2 1
2
-D meshing, is a popular volume mesh

generation method in finite element method analysis. Mapping is typically used

for hexahedral meshing [5, 6, 7]. As the name suggests, the method maps a two-

dimensional (2-D) source mesh in sweeping motion to generate a volume mesh. The

boundary ribs, i.e., series of ring-like closed boundaries, are initially generated along

the sweeping direction to guide the mapping process. The spacing between the layers

is specified prior to the mapping as is often done in a structured mesh generation

process.

Staten et al. [7] used unstructured background mesh and linear interpolation to

map the nodes from the source layer to the target layer. Mapping alone, however,

cannot guarantee that the mesh will be of high quality. Even though the nodes

are always projected within the interior, mapping cannot prevent the edges from

becoming tangled, especially near a concave boundary. In such a case, a mesh should

be corrected because the tangled edges lead to negative volume cells, which render

the mesh unusable.

A smoothing method with guaranteed mesh quality improvement is extremely

important to correct an invalid mesh and also to further enhance the quality of a

valid mesh. Laplacian smoothing is the most widely used smoothing method because

of its simplicity and effectiveness in moderate cases[8, 9]. One of the variations of

Laplacian smoothing is based on tension spring analogy. Laplacian smoothing has

been applied to the unsteady flow computation of a pitching blade [9]. The limitation

of this method is that the quality of the smoothed mesh is not always improved [10].

Specifically, the Laplacian method and its variant methods can degenerate the mesh

near a concave boundary by creating inverted cells or placing a node outside of the

valid region. A “smart”Laplacian smoothing technique works around the problem by

4

rejecting the displacement of a candidate node computed by a conventional Laplacian

method if the new node location decreases the quality measure.

Angle-based smoothing uses a torsion spring analogy and is designed to achieve a

smooth variation of angles between neighboring cells [11]. The edge length, however,

is not directly controlled and thus it appears that this method requires an initial grid

of moderate quality. Another class of the mesh smoothing method, which has recently

become popular, is based on the direct optimization of the quality measure [12, 13].

The optimization can be either a global or a local process, with the latter approach

generally being cost-effective. The list of the quality measures can be found in Amenta

et al. [14], who suggest that a mixture of quality measures be used. They show that

a smoothing method coupled with a quality measure based only on edge-length can

create collapsed cells.

This concludes the review of the mesh generation methods. The proposed hy-

brid mesh method in the present work combines the strengths of unstructured mesh

techniques with the simplicity of structured mesh generation. The mapping method

and the mesh optimization technique are also combined in order to develop a simple

yet effective volume mesh generation tool for turbomachinery application. An initial

mesh is created by mapping a two-dimensional (2-D) unstructured mesh in a prede-

termined direction, which in the case of turbomachinery is the spanwise direction of

an airfoil. Mesh optimization is then applied to remove the invalid elements in the

mesh and to increase the quality of the mesh. The proposed method extends the tra-

ditional two-dimensional node insertion and edge-swapping methods. The extended

methods are designed to improve the quality of the proposed hybrid type of mesh.

5

C. Flow solver

The hybrid mesh, which was discussed in the previous section, is the combination

of unstructured grid and structured grid. The combined mesh is an unstructured

mesh overall. This section reviews the computational methods for the flow models

on unstructured meshes.

The Navier-Stokes equations together with the conservation equations of mass

and energy describe the motion of a compressible viscous fluid. The equations are

a nonlinear system of equations. Even though these equations have been known for

centuries, the existence of a general solution is yet to be proved [15]. Aside from some

simple cases, obtaining an analytical solution is not trivial because of the nonlinearity.

Therefore, experiments are routinely performed to investigate the details of the flow

field. With ever increasing computational power, CFD is increasingly used to solve

the Navier-Stokes equations for many practical purposes.

Finite Volume Method (FVM) is a discretization method which uses an integral

form of the conservation equations. Once a domain of interest is subdivided into

a set of non-overlapping volumes, which are often referred to as control volumes,

the governing equations must hold not only for the entire domain, but also for each

control volume. The final solution obtained in this manner is a set of discrete values

represented at the centers and/or the nodes of the control volumes.

FVM can be implemented in a cell-centered approach or a cell-vertex approach,

depending on where solutions are stored. Solutions are stored at the centroids of

cells in a cell-centered method whereas they are stored at the vertex in a cell-vertex

method. The present work uses a cell-vertex method.

Given a three-dimensional (3-D) tetrahedral mesh, the ratio of the number of cells

to the number of vertices ranges from approximately 5 to 6. This ratio translates

6

to the greater memory requirement for a cell-centered approach than a cell-vertex

approach.

The computational requirements per unknown are proportional to the number of

faces in a cell-centered method and to the number of edges in a cell-vertex method.

The ratio of the number of faces to the number of edges is about 2 for a tetrahedral

grid. Therefore, the computational resources required for a cell-centered method are

considerably higher than for a cell-vertex method [16]. However, for a given mesh,

higher quality solutions may be produced using a cell-centered technique [17]. The

size of control volumes tends to be smaller in a cell-centered method than in a cell-

vertex method and the smaller volumes contribute to the improved solution accuracy

of a cell-centered method [18].

The flux in the Navier-Stokes equations is due to convection and diffusion. The

present work uses the Roe’s approximate Riemann solver to compute the convective

flux and averaged gradients with directional derivative to compute the viscous flux [19,

20, 21, 22].

The flux exchange occurs on the surfaces of the control volumes. Consider a

common surface shared by two adjacent control volumes. The discrete state vectors

are stored at the center of the two volumes. When the state vectors are not equal, the

evaluation of the flux function on the shared surface raises a question: which state

vector should be used to compute the flux? Godunov’s method treats the two distinct

states across an interface as the initial conditions for a time dependent problem in

order to compute the evolution of the states. The initial value problem is known as

the Riemann problem. An exact solution of the nonlinear problem can be computed

iteratively, but at high cost. For this reason, an approximated solution is typically

used. One of the most used solutions was developed by Roe and its wide acceptance is

due to its accuracy, especially its superior solution behavior in shear layers [23], p. 105.

7

The solution methodology in the Godunov method is as follows: 1) reconstruc-

tion, in which the interface states are specified, 2) evolution stage, in which the

interaction of the two interface states progresses in time and the evolved solution is

obtained as the Riemann solution, and 3) projection, in which the updated solution

is distributed to correct the two states at the centers of control volumes.

The discrete states at the centers of control volumes are the volume-average val-

ues. The reconstruction is an inverse process of the volume-averaging. Based on the

local subset of the averaged states, the variation of the states in a limited region can

be expressed as a polynomial function. A constant function represents no variation

of a state within a control volume. With a constant reconstruction, the reconstructed

states on the cell boundary is equal to the averaged states at the center of the cell.

This results in a first-order accurate solution in space. With a linear reconstruction,

the solution achieves a second-order accuracy. The k-exact reconstruction by Barth

is a generalization for arbitrary order of reconstruction where k is the order of recon-

struction accuracy [24]. The computational cost for the reconstruction beyond the

linear accuracy grows more steeply than the accuracy grows. For this reason, the

reconstruction in the present work is limited to the linear reconstruction for second-

order spatial accuracy.

The numerical solution based on reconstruction higher than a linear accuracy

creates a nonphysical oscillatory response at local extrema. Godunov has shown that

the monotonic solution is only possible for a linear method at first-order accuracy.

Limiter functions are nonlinear by design to overcome the first order accuracy limi-

tation imposed on a linear method. In one-dimensional sense, the limiter functions

control the slope of the reconstructed states to prevent a new extrema from being

created. The extension of the concept to a multi-dimension is originally proposed

by Barth [25]. The present work uses a limiter function proposed by Venkatakrish-

8

nan [26].

Many flows in engineering problems are turbulent and consequently are charac-

terized by random fluctuations. Even though an instant realization of a turbulent

flow can be directly simulated with the Navier-Stokes equations, because of the small

scales, a direct numerical simulation requires enormous number of data points. This

makes the direct simulation extremely expensive in terms of the computational re-

sources requirements and unrealistic in their applications to most compressible flows.

The mean motions of turbulent flows can be alternatively determined by the

Reynolds-averaged Navier-Stokes equations at relatively low cost. The cost reduction

is mainly due to the reduced spatial resolution. Averaging the flow variables, coupled

with the nonlinearity of the Navier-Stokes equations, introduces the Reynolds stresses

as new unknowns. The closure of the problem is completed with turbulence models.

The present work employs the k − ω model. This concludes the introduction to the

solution methods.

D. Original contributions of the present work

• Development of a novel hybrid mesh generation technique, incorporating the

mesh optimization methods.

• Development of a compressible flow solver designed for a mixed element un-

structured mesh.

• Development of a parallelization strategy for flow solution.

• Prediction of axial thrust load of a centrifugal compressor.

9

E. Outline

The next chapter presents the Navier-Stokes equations, the Reynolds-averaged Navier-

Stokes equations, and the turbulence model used in the present work. The first part

of Chapter III is devoted to a discussion of the hybrid mesh generation method. The

mapping and mesh smoothing methods are presented. This is followed by the dis-

cussion of the edge-swapping and the node insertion techniques. The discussion of

the solution algorithms for the flow solver are divided into the topics related to the

spatial discretization and the temporal discretization.

Chapter IV presents the results of the hybrid mesh generation technique, the flow

solver validation cases, and a numerical study of a high speed centrifugal compressor.

The conclusions and the future work are presented in the last chapter.

10

CHAPTER II

PHYSICAL MODEL

A. The Navier-Stokes equations

The Navier-Stokes equations in conjunction with the continuity equation and en-

ergy balance equation describe the conservation of mass, momentum and energy of

a compressible heat conducting viscous fluid. This system of the equations will be

collectively referred to as the Navier-Stokes equations for the remainder of this doc-

ument. The Navier-Stokes equations can be written as

∂ρ

∂t
+
∂ρui
∂xi

= 0 (2.1)

∂ρui
∂t

+
∂ρuiuj
∂xj

=
∂

∂xj
(−p+ tij) (2.2)

∂ρE

∂t
+
∂ρHuj
∂xj

=
∂

∂xj
(tijui − qj) (2.3)

where the body force due to the gravity and the heat source are ignored. ρ is the

density and ui are the velocity components. p is the static pressure and tij is the

viscous stress tensor. E is the total energy per mass, H is total enthalpy, and qj is

heat-flux. Einstein summation rule is assumed.

The total energy per mass, E, and total enthalpy, H, are defined as

E = e+
1

2
(uiui), H = h+

1

2
(uiui) (2.4)

where e is the internal energy and h is the enthalpy.

The momentum balance equations are based on Cauchy’s equation of motion with

a Newtonian linear stress-strain constitutive equation. With the latter relationship,

11

the viscous stress tensor tij is

tij = µ

(

∂ui
∂xj

+
∂uj
∂xi

)

+ λ
uk
xk
δij (2.5)

where µ is the dynamic viscosity and λ is the bulk viscosity. The dissipation due to

viscosity, tij∂ui/∂xj, must be non-negative and this requires λ + 2µ/3 ≥ 0. Stokes

hypothesis assumes that

λ+
2

3
µ = 0 (2.6)

such that tij vanishes when the fluid motion is in rest. The heat flux qj follows the

Fourier Law,

qj = −k
∂T

∂xj
(2.7)

where k is the thermal conductivity and T is the temperature. Temperature, pressure

and density are related by the equation of states. The equation of states for the ideal

gas is

p = ρRT (2.8)

where R is the gas constant for air. The internal energy and enthalpy of a calorically

perfect gas are functions of temperature only

e = cvT, h = cpT (2.9)

where cv and cp are the specific heat constants at constant volume and constant

pressure, respectively. Using equation (2.9), the pressure in equation (2.8) can be

expressed as

p = ρRT = (γ − 1)(E − 1

2
uiui) (2.10)

where the following definitions are used

γ =
cp
cv
, cp − cv = R. (2.11)

12

For air at standard conditions, the ratio of specific heats, γ, is 1.4.

The viscosity is approximated using Sutherland formula

µ = µ0

(

T

T0

)2/3
T0 + S

T + S
. (2.12)

For air, µ0 = 1.716× 10−5Pa · sec., T0 = 273K, and S = 111.0K.

B. Reynolds-averaged Navier-Stokes equations

For many practical problems, fluid motions are turbulent. As stated before, tur-

bulent flows are characterized in part by small scale unsteady random fluctuations.

Reynolds decomposition of turbulent flow introduces an averaging procedure such

that a variable can be decoupled into the sum of the mean value and the fluctuating

value

a = a+ a′, (2.13)

where a is the mean value and a′ is the fluctuating value. The mean value a is defined

as

a =
1

∆t

∫ ∆t

0

a(x, τ)dτ. (2.14)

The time interval ∆t should be large enough compared to the time scale of fluctuation.

An illustrative example in Wilcox [27], p. 32, suggests that the integration time of 20

seconds can be adequate for a flow at 10 m/sec in a 5 cm diameter pipe.

For the compressible turbulent flow, density also fluctuates. Density fluctuation

can be eliminated from the averaged equations by employing density-weighted or

Favre average on select variables rather than Reynolds average. Favre average is

defined as

a = ã+ a′′, ã ≡ ρa

ρ
. (2.15)

13

The time average of fluctuation term is by definition

a′ = 0 (2.16)

whereas for the density-weighted

ρa′′ = 0. (2.17)

Some useful results satisfied by the averaging include

a+ b = a+ b, (2.18)

cu = cu, (2.19)

where c is a constant,

∂u

∂t
=
∂u

∂t
,

∂u

∂xi
=

∂u

∂xi
(2.20)

ab = ab. (2.21)

The compressible Reynolds-averaged Navier-Stokes (RANS) equations are ob-

tained by introducing Reynolds and Favre decompositions into the Navier-Stokes

equation given in Eqs. (2.1)-(2.3) and taking the time average. Specifically, velocity

components, enthapy and energy, which appear in Eqs. (2.1)-(2.3) as the products

multiplied by density, are Favre averaged whereas the other variables are Reynolds

averaged

ui = ũi + u′′i , E = Ẽ + E ′′, H = H̃ +H ′′, (2.22)

ρ = ρ̄+ ρ′, p = p̄+ p′, (2.23)

tij = tij + t′ij, q = q̄ + q′. (2.24)

The selective use of Favre average causes the resultant equations not to include the

density fluctuation term [28], pp. 603-606.

The definitions of the energy and enthapy require careful attention since the

14

mean values include the turbulence kinetic energy. The total energy and enthalpy of

mean flow are denoted by Ê and Ĥ, respectively, and they are related to the mean

values

Ẽ = ẽ+
1

2
ũiũi + k = Ê + k (2.25)

H̃ = h̃+
1

2
ũiũi + k = Ĥ + k (2.26)

where the density-weighted average turbulence kinetic energy is defined as

k =
1

2

ρu′′i u
′′
i

ρ
. (2.27)

The Reynolds-averaged Navier-Stokes equations [28], p. 603, are then given by

∂ρ

∂t
+
∂ρũj
∂xj

= 0 (2.28)

∂ρũi
∂t

+
∂ρũiũj
∂xj

= − ∂p

∂xi
+

∂

∂xj

(

tij − ρu′′i u′′j
)

(2.29)

∂ρÊ

∂t
+
∂ρĤũj
∂xj

=
∂

∂xj

(

ũi(tij − ρu′′i u′′j)− qj − ρh′′u′′j
)

(2.30)

where

tij = µ
(

∂ui
∂xj

+
∂uj
∂xi
− 2

3
∂uk
∂xk

δij

)

(2.31)

qj = − cpµ

Pr
∂T
∂xj
. (2.32)

RANS introduces new unknowns, which are the Reynolds stresses −ρu′′i u′′j and

the Reynolds heat fluxes ρh′′u′′j . Since the number of equations is less than the number

of unknowns, the under-determined system of equations requires a closure.

Using Boussinesq approximation, the Reynolds stresses are linked to the mean

flow in a form similar to the viscous stress tensor of Eq. (2.31). Specifically, it is

15

assumed that the Reynolds stress is related to the gradient of mean velocity by

−ρu′′i u′′j = µT

(

∂ũi
∂xj

+
∂ũj
∂xi
− 2

3

∂ũk
∂xk

δij

)

− 2

3
ρkδij. (2.33)

where µT is the eddy viscosity determined from a turbulence model. Similarly, the

Reynolds heat flux is related to the gradient of mean temperature as

ρh′′u′′j = −cpµT
PrT

∂T

∂xj
(2.34)

where PrT is the turbulent Prandtl number and PrT = 0.9 for air at standard con-

ditions. In this work, the turbulence transportation equations based on the k − ω

model is used to determine the eddy viscosity, µT . The last term of Eq. (2.33) which

includes k arises from the need that Eq. (2.33) must to recover the definition of k in

Eq. (2.27) when Eq (2.33) contracts, i.e., i = j.

Using Eq. (2.33) and Eq. (2.34), Eq. (2.28) can be rewritten as

∂ρ

∂t
+
∂ρũj
∂xj

= 0 (2.35)

∂ρũi
∂t

+
∂ρũiũj
∂xj

= − ∂p

∂xi
+
∂τ ij
∂xj

(2.36)

∂ρÊ

∂t
+
∂ρĤũj
∂xj

=
∂

∂xj

(

ũiτ ij − qj
)

(2.37)

where

τ ij = (µ+ µT)

(

∂ũi
∂xj

+
∂ũj
∂xi
− 2

3

∂ũk
∂xk

δij

)

(2.38)

qj = cp

(

µ

Pr
+

µT
PrT

)

∂T

∂xj
. (2.39)

1. Nondimensional form

The Reynolds-averaged Navier-Stokes equations presented in the previous section are

dependent on the choice of the measurement system (SI, CGS, etc.). The comparison

16

of results obtained in the dimensional form can be difficult if different units or scales

are used. The results presented in nondimensional variables such as the Mach number

and Reynolds number can often provide more meaningful information than the results

in dimensional variables. Another benefit of the nondimensional form is that the

magnitude of the variables can be within similar range as long as their reference

values are chosen carefully. For example, at standard sea level condition in SI units,

the magnitude of pressure is approximately 105 times larger than that of density.

Using non-dimensional variables given in Table I, the magnitudes of pressure and

density are of the same order.

The non-dimensionalization used in this work is not unique because the choices of

reference variables and the reference values are not unique. The non-dimensional form

of the Reynolds-averaged Navier-Stokes equations employed in this work is obtained

using the reference length L, speed of sound c∞, density ρ∞ and dynamic viscosity

µ∞.

In the non-dimensional form, the Reynolds-averaged Navier-Stokes equations can

be written as

∂ρ∗

∂t∗
+
∂ρ∗u∗j
∂x∗j

= 0 (2.40)

∂ρ∗u∗i
∂t∗

+
∂ρ∗u∗iu

∗
j

∂x∗j
= −∂p

∗

∂x∗i
+
∂τ ∗

∂x∗j
(2.41)

∂ρ∗E∗

∂t∗
+
∂ρ∗H∗u∗j
∂x∗j

=
∂u∗i τ

∗
ij

∂x∗j
−
∂q∗j
∂x∗j

(2.42)

where

τ ∗ij =
µ∗ + µ∗t
Re

(

∂u∗i
∂x∗j

+
∂u∗j
∂x∗i
− 2

3

∂u∗k
∂x∗k

δij

)

(2.43)

q∗j = − γ

Re

(

µ∗

Pr
+

µ∗t
Prt

∂e∗

∂x∗j

)

. (2.44)

17

Table I. Nondimensional variables.

x∗i = xi/L u∗i = ũi/c∞ t∗ = tc∞/L ρ∗ = ρ̄/ρ∞ p∗ = p̄/(ρ∞c
2
∞)

E∗ = Ê/c2∞ H∗ = Ĥ/c2∞ µ∗ = µ/µ∞ µ∗t = µt/µ∞ e∗ = ē/c2∞

The Reynolds number based on the reference variables in Table I is defined as

Re =
ρ∞c∞L

µ∞
. (2.45)

C. Turbulence model

Most of the flows of interest in engineering applications are turbulent. One method to

solve turbulent flows is Direct Numerical Simulation (DNS). This method is still too

expensive for practical engineering purposes despite ever increasing computational

power [29], pp. 338-340, [27], pp. 381-386. An alternative cost effective approach is

turbulence modeling. One of the advantages of turbulence models is that solutions can

be obtained on relatively coarse meshes. Consequently, the required computational

cost is significantly less than that of DNS.

The current work employs turbulence modeling. Specifically, the k − ω model

is used. The turbulence model is used to determine the eddy viscosities. Once the

distribution of eddy viscosities is determined, the RANS equations can be solved in

the same manner as a laminar flow case. The turbulence effects are captured in the

mean flow equations through the effective viscosity and conductivity.

Similar to the physical viscosity, the eddy viscosity νT has dimensions of L2/T

where L is the dimension of length and T is time. Using a representative turbulence

time, length and velocity scale, tT , vT and lT respectively, the eddy viscosity νT can

18

be defined as

νT = vT lT =
l2T
tT

= v2T tT . (2.46)

The turbulence model considered herein defines the eddy viscosity in terms of the

appropriate scales by using the model equations. The k − ω model defines the eddy

viscosity in terms of the turbulence kinetic energy k = v2T and the specific dissipation

rate ω ≈ 1/tT . Before the detailed description of the model is presented, some of the

limitations of the model are noted in the following.

The two equation model relies on the previously mentioned Boussinesq hypoth-

esis. The hypothesis assumes that the Reynolds stresses are linearly related to the

strain-rate of mean flow. Furthermore, it assumes that the proportionality between

the stresses and the velocity gradient can be expressed using an eddy viscosity. The

end result is that the the predicted eddy viscosity is isotropic whereas many types of

flows, such as contracting flows, wall bounded flows, exhibit anisotropic turbulences.

In the case of the flat plate boundary layer flows, the measured stresses exhibit the

anisotropic ratio of 4:2:3 for ū′2:v̄′2:w̄′2 [27], p. 40.

The deficiency of the hypothesis is also pronounced when a sudden change of

mean strain rate occurs and when flows experience increased rate of strain. The lim-

itations are expected because there is no mathematical theory that suggests that the

Reynolds stresses and local strain-rate are directly related. The hypothesis assumes

that the production and dissipation are locally balanced. When the balance is dis-

turbed, the turbulence effect can be delayed, meaning that the downstream Reynolds

stresses are strongly dependent on the upstream condition. This “history effect”is

not recognized by the k − ω model.

Wall curvature is also known to introduce increased strain rate, which makes the

Boussinesq hypothesis invalid [30]. Experiments show that turbulence is enhanced on

19

concave walls when compared to flat plate flows. On the other hand, the Reynolds

stresses on convex walls are reduced. The Reynolds stress equations must include the

production term due to the Coriolis effect when expressed in a rotational frame of

reference [31]. The production term disappears when the Reynolds stress equations

are contracted to the kinetic energy equation. The k − ω model, which depends on

the kinetic energy equation, therefore, cannot account for the curvature or rotational

effect.

Kim and Rhode [32] studied a modified law-of-the-wall model based on the vari-

ation of turbulence length scale due to wall curvature and reported improved results

on swirling flows on curved walls. Wilcox and Chambers [33] proposed a modified

k-equation to introduce a curvature effect into the k − ω model. Modifications to

the ε equation in the k − ε model, which is equivalent to the modification of the ω

equation, can be found in Launder et al. [34] and Hellsten [31]. Despite the known

effects, the investigation of all of the limitations of the k − ω model is beyond the

scope of the present work.

The turbulence model used in the present work is based on incompressible flow.

The incompressible turbulence model can be employed for compressible flow at rea-

sonable high Mach numbers flow [28], pp. 603-606. This is based on Morkovin’s

hypothesis that states the effect of density fluctuation on the turbulence remains

small for Mach numbers below 5 [35].

Despite the limitations and the assumptions made, the turbulence models have

been applied successfully on many engineering problems [30, 36, 37, 38, 31]. In the

following, the details the k − ω model are presented.

20

1. The k-ω model

The k − ω model is a two-equation model. The model determines the eddy viscosity

using two differential equations, one for the turbulent kinetic energy k and the other

one for the specific dissipation rate ω. The k − ω model was originally developed by

Wilcox [27]. The modified model used in the present work is due to Menter [39]. The

modification involves the blending of the k − ε model to the original k − ω model.

A well known deficiency in the original k − ω model is the solution sensitivity to the

freestream conditions [27, 40, 41, 31]. The blending strategy relives the k − ω model

from this sensitivity.

The k transport equation in the k − ω model is based on the turbulent energy

budget equation. The budget equation [42], p. 63, is given by

Dk

Dt
= τijSij −

[

2νsijsij −
∂

∂xj

(

νu′i
∂u′j
∂xi

)]

+
∂

∂xj

[

ν
∂k

∂xj
−
(

1

2
u′iu
′
iu
′
j +

1

ρ
p′u′j

)]

(2.47)

where

Sij =
1

2

(

∂ui
∂xj

+
∂uj
∂xi

)

, sij =
1

2

(

∂u′i
∂xj

+
∂u′j
∂xi

)

. (2.48)

The first term of the right-hand side of Eq. (2.47) is the production term. This term

is always positive because both τij and Sij are symmetrical by definition. The second

group of terms in the first bracket is the dissipative term. As a group, this term

differs from the true dissipation term. However, the difference is shown to be quite

small [27]. Besides the unknown k, the budget equation contains extra unknowns

that need modeling.

The k − ω model equations are given by

Dρk

Dt
= P − β∗ρωk + ∂

∂xj

[

(µ+ σkµT)
∂k

∂xj

]

(2.49)

21

Dρω

Dt
= γω

ω

k
P − βρω2 + ∂

∂xj

[

(µ+ σωµT)
∂ω

∂xj

]

+ (1− F1)
2ρσω2
ω

∂k

∂xj

∂ω

∂xj
(2.50)

where P is the Boussinesq approximation of the production of the turbulence kinetic

energy,

P = µT

(

∂ui
∂xj

+
∂uj
∂xi
− 2

3

∂uk
∂xk

δij

)

− 2

3
ρkδij

∂ui
∂xj

. (2.51)

The dissipation term in the k budget equation is defined as

ε ≡ β∗ρωk ≈ 2νsijsij −
∂

∂xj

(

νu′i
∂u′j
∂xi

)

. (2.52)

The last two terms in Eq. (2.47) are referred to as the transport by turbulent ki-

netic energy and the transport by pressure fluctuation. They are approximated as a

diffusion of k,

σkµT
∂k

∂xj
≈ −

(

1

2
u′iu
′
iu
′
j +

1

ρ
p′u′j

)

. (2.53)

The transport equation for ω is a postulated equation and it is modeled sim-

ilarly [27], pp. 119-121. The last term of Eq. (2.50) arises from the transformed

k− ε model and it is referred to as a cross-diffusion term. The model coefficients are

determined by blending the k − ω constants and k − ε constants, which are

[σk, σw, β]
T = F1[σk1, σw1, β1]

T
1 + (1− F1)[σk2, σw2, β2]T (2.54)

where

[σk1, σw1, β1]
T = [0.5, 0.5, 0.0750]T

[σk2, σw2, β2]
T = [1.0, 0.856, 0.0828]T .

(2.55)

The blending coefficient F1 is designed to approach 0 at wall and 1 in the

freestream. The blending coefficient, F1, is defined as

F1 = tanh(Γ4) (2.56)

22

where the argument Γ is given by

Γ = min

[

max

(√
k

β∗ωd
,
500ν

ωd2

)

,
4ρσω2

k

CDkωd2

]

. (2.57)

d is the distance to the wall and CDkω is defined as

CDkω = max

[

2ρσω2

ω

∂k

∂xj

∂ω

∂xj
, 10−20

]

. (2.58)

Finally, the eddy viscosity νt is defined as

νT = α∗
k

ω
(2.59)

where α∗ = 1.

23

CHAPTER III

NUMERICAL METHOD

The first part of this chapter presents the hybrid mesh generation method 1. This is

followed by the governing equations of the fluid motion. The rest of the chapter is

devoted to describing of the solution methods for flow simulation.

The flow model is based on the Reynolds-averaged Navier-Stokes (RANS) equa-

tions and the k− ω model. The discretization of the governing equations is based on

the FVM. The spatial terms and the temporal terms are discretized independently.

The solution algorithms are developed for unstructured meshes.

A. Hybrid mesh generation

1. Introduction

The hybrid mesh generation technique developed in the present work is designed for

turbomachinery applications. The present method takes advantage of the geometry

features which are specific to turbomachinery cascades. Consequently, the cross sec-

tions of the flow domain at different radial location are discretized using topologically

identical meshes. The method presented herein generates the 3-D mesh as a sequence

of 2-D layers stacked along the span of the airfoil.

The 2-D grid is a combination of a structured O-grid, next to the airfoil surface,

and an unstructured grid exterior to the O-grid. The O-grid is used to resolve the

viscous region in the vicinity of the blade. The remainder of the 2-D domain is

delimited by the outer boundary of the O-grid, the periodic boundaries, and the inlet

1Part of this chapter has been previously published in the AIAA Journal of Propul-

sion and Power [43] and copyrighted by the present author and Dr. Paul Cizmas.

24

and outlet boundaries. This 2-D domain is filled by triangular cells. The unstructured

mesh is used to make the mesh generator applicable to a complex geometry for which

conventional structured meshes may fail to produce an acceptable result.

A 2-D mesh is first generated at a select spanwise location. This 2-D mesh is

a combination of a structured cells and unstructured cells. The 2-D “source ”mesh

is then projected to “target ”layers at different spanwise locations. As many target

layers as necessary are generated in order to capture blade geometry variation from

hub to tip. Edges are then added between the “twin ”nodes of adjacent target layers

in order to create volume cells. Consequently, the 3-D cells are either prisms or

hexahedra, depending on whether they correspond to triangle or quadrilateral 2-D

cells.

To improve mesh quality, the grid is smoothed by relocating the interior and

periodic boundary nodes to their optimal points. The smoothing procedure employs

the optimization of mesh quality using a steepest decent method. The O-grid region

is not smoothed. The outer boundary of the O-grid serves as a fixed boundary for

the smoothing process.

The spanwise variation of the airfoil shape results in a deformation of the el-

ements of the mapped meshes. This deformation reduces the quality of the mesh.

The mesh quality is further reduced by the fixed periodic boundaries that limit the

redistribution of the nodes close to the boundaries. Unlike typical boundaries in solid

modeling, the periodic boundaries of turbomachinery cascade do not have to be fixed.

The only restriction is that the circumferential distance between two periodic nodes

on the periodic boundaries must be constant. The method proposed herein allows

that the nodes of the periodic boundaries move. The position of the nodes on the

periodic boundaries results from the smoothing of the neighboring internal nodes.

This additional degree of freedom for the nodes on the periodic boundary yields a

25

better quality mesh.

A major advantage of the technique developed in this study is that the complexity

of a 3-D algorithm is reduced to that of a 2-D algorithm. The structured nature

of the mesh in the spanwise direction simplifies mesh generation. In addition, flow

computation benefits from the simple partition of the mesh. Because the connectivity

is identical among the layers, the communication across them is simplified. This makes

the mapped mesh attractive to parallel flow computation.

2. Mapping

The initial step in the mapped mesh generation is the definition of the boundary ribs,

which are the series of ring-like closed boundaries to guide the direction of mapping.

The blade surface is cross-sectioned at a predetermined interval along the spanwise

direction. An equal number of nodes is placed around the airfoil at each spanwise

location. The outer boundaries, i.e., the inlet, outlet, and periodic boundaries, are

defined at every radial location. An equal number of nodes is used for the outer

boundaries at each spanwise location.

An O-grid mesh is generated to discretize the viscous region around the blade

at each spanwise location. The hexahedral volume cells in the O-grid region are

constructed by connecting the topologically identical quadrilateral cells of adjacent

layers. These hexahedral cells are fixed permanently for the remainder of the mesh

generation steps. The outer boundary of the O-grid block defines the inner boundary

of the unstructured mesh.

The mesh of the source layer is generated first. The interior of the domain is

bounded by the outer boundaries (inlet, outlet, and periodic) and the outer bound-

aries of the O-grid. This interior domain is tessellated to produce a mesh with triangu-

lar cells. The routine “Triangle” [44] is used herein to generate the 2-D unstructured

26

Fig. 1. Boundaries of background meshes with nodes in the lower inlet corner.

mesh. This mesh serves as the “source”to be mapped on the “target”layers.

The domain to be discretized by the unstructured mesh is divided into six blocks,

as shown in Fig. 1. Structured meshes are generated for each block. These additional

meshes are called the background meshes. Similar background meshes are constructed

on the target layers so that a cell to cell mapping is established between the source

and the target background meshes. The source nodes are then projected on the target

layer into the corresponding cell of the background mesh. Bilinear interpolation is

performed to find the mapped location of the node within the cell.

3. Mesh smoothing

A mapped mesh may not be acceptable for flow computation due to the lack of

explicit quality control in the mapping procedure. Unless the variation from source

to target layer is small, the mapping can produce low quality cells or even tangled

elements. One of the most effective techniques for increasing the quality of a 3-D

mesh is the smoothing method that is based on the optimization of mesh quality

parameters. The computational cost of this technique, however, can be very high.

The majority of the computational cost is due to the computation of quality measures.

Gradient computation can also contribute significantly to the computational cost in

27

the steepest descent method.

The present study uses a 2-D quality measure rather than a 3-D quality measure.

The underlying assumption is that the variation from one layer to the adjacent layer is

small. This is true for turbomachinery airfoils, which usually have a continuous vari-

ation of the cross-section in the spanwise direction. Consequently, the overall quality

of a prism cell, which has two triangular faces on the two adjacent layers, is domi-

nated by the quality of the triangular cells. The mesh generation essentially becomes

a series of 2-D mesh operations of area mesh smoothing. This approach not only

reduces the computational cost significantly, but also simplifies the implementation.

a. Sub-mesh

A sub-mesh is an entity used for local sub-mesh smoothing. A sub-mesh is defined

by a set of cells that share a common node. Typical convex and star sub-meshes are

shown in Figs. 2a and 2b. All corners of a convex sub-mesh are convex. At least one

corner is concave in a star sub-mesh. The type of the sub-mesh is important in the

smoothing process. Mesh smoothing is applied iteratively to sub-meshes. Given a

sub-mesh as an input, local mesh optimization is then reduced to finding the optimal

location of the common node while the other nodes on the boundary of the sub-mesh

are stationary.

For a node on the periodic boundary, a sub-mesh is defined as shown in Fig. 2c.

The figure shows a sub-mesh for node N0, which lies on the periodic boundary. The

sub-mesh for node N0 can be assembled by using the boundary nodes N5 and N6 of

the sub-mesh of node N0′ , the pair to node N0. Once the optimized location of N0 is

found, the location of its pair node N0′ is updated using the new location of N0 plus

the pitch. For inlet and outlet boundaries the sub-mesh is generated by mirroring the

half-moon sub-mesh with respect to the boundary face.

28

N0 N1

N2

N3

N4

N5

(a) Convex sub-mesh.

N4

N5

N3
N2

N1

N0

(b) Star sub-mesh.

N3
N4

N2

N2’

Pitch

N0

N0’

N1

N1’

N5 N6

N5" N6"

(c) N1-N0-N2 is periodic boundary.

Fig. 2. Sub-mesh for node N0.

Figure 3 shows the types of sub-mesh boundaries. The boundary of a sub-mesh

can be simple, non-simple (tangled), or inverted simple. The boundary is considered

positive if the nodes on the boundary are ordered in a counterclockwise direction. For

the non-simple case, the edge segments cross each other and the cells overlap. The

resulting mesh is unusable. The inverted simple sub-mesh, shown in Fig. 3d, occurs

in extreme cases. This mesh is unusable.

29

b. Centroid smoothing

Centroid smoothing places the common node, N0, at the centroid of the valid region.

The valid region for the common node is defined as the area where the node can be

placed such that all the resultant cells of the sub-mesh have positive areas. Tangled

edges are caused by placing the common node outside of the valid region. For the

non-simple case, a valid region cannot be defined.

The valid region depends on the type of sub-mesh. The common node of a convex

sub-mesh can be placed anywhere inside the boundary in order to produce a valid

triangulation. Unlike the case of the convex sub-mesh, only part of the interior of a

star sub-mesh is a valid region. The valid region of a star sub-mesh is determined by

the kernel, which is defined next.

The shadow is defined as the set of points from which a line can be drawn to any

point in the interior without crossing the boundary. A shadow is associated with each

concave corner. For a sub-mesh with multiple concave corners, the kernel is defined

as the intersection of the shadows [45]. For a star sub-mesh with only one concave

corner, the kernel is identical to the shadow.

To construct a shadow, half-spaces are defined with respect to each boundary

segment that forms the concave corner. Figure 4a shows the half-space formed by the

line running through the nodes N1 and N2. The second half-space is defined by the

nodes N2 and N3, as shown in Fig. 4b. The intersection of the two half-spaces defines

the shadow of the concave corner at N2 as shown in Fig. 4c. There is a second concave

corner in the sub-mesh shown in Fig. 4, so that the shadow associated with the second

corner has to be determined to obtain the kernel. The kernel of the sub-mesh is shown

in Fig. 5a.

Near a concave region with high curvature, such as at the airfoil leading or trailing

30

(a) Simple. (b) Non-simple (Concave).

(c) Non-simple (Reflective). (d) Inverted.

Fig. 3. Types of sub-mesh boundary.

31

N1

N2

N3

(a) N1-N2

N1

N2

N3

(b) N2-N3

N1

N2

N3

(c) Shadow.

Fig. 4. Shadow at concave corner: intersection of half-spaces a) and b).

(a) Valid kernel. (b) Valid kernel. (c) Empty kernel.

Fig. 5. Types of kernel.

edge, an intersection of shadows may not be found. In this case, the kernel is empty

as shown in Fig. 5(c). In such a case, the valid location of the common node cannot

be determined locally. In most cases, the smoothing of the neighboring sub-meshes

changes the shape of the empty kernel sub-mesh so that a valid region can be found

in later iterations. The prolonged presence of the empty kernel during the iterations,

however, indicates the limitations of mesh smoothing. A valid triangulation can be

obtained for the case of the empty kernel shown in Fig. 5(c) by introducing a new

node at one of the two shadows and placing the existing common node in the other

shadow. Further details on node insertion are given in the next section.

32

c. Optimization-based smoothing

Optimization-based smoothing is a technique based on the steepest descent optimiza-

tion method [13]. This smoothing method operates on the sub-mesh and computes

the new location of the internal node so as to increase the local minimum quality

metric. The quality metric used throughout this paper is based on the ratio of the

triangular cell area to the sum of the squared length of each of its edges. For a triangle

cell with nodes at X1, X2, and X3, the metric τ is defined by

τ = C
(E12 × E13) · en

E12 · E12 + E13 · E13 + E23 · E23
, (3.1)

where C is a constant and Eij is the edge vector fromX
i toXj. The unit vector, en, is

normal to the triangle cell. Consequently, the vector E12×E13 has the same direction

and orientation as the unit vector en if the nodes of the cell T123 are arranged in a

counterclockwise order. For an inverted cell, the numerator should be negative. The

metric τ has bounds of

−1 ≤ τ(T) ≤ 1 (3.2)

by setting C = 2
√
3. The metric for an equilateral triangle is either -1 or 1 depending

on the orientation.

With a sub-mesh about a node N i, the new location X̂i of the node N i is deter-

mined by

X̂i = Xi + γiGi, (3.3)

where Gi is the gradient of the metric at node N i and γi is a factor to control the

magnitude of the node displacement along Gi. The new location of the node changes

the metrics of the cells. The new minimum of the quality metric should be greater

33

j+1

n

j’

l

i

j

Tj

Fig. 6. Centroid dual cell.

than the old minimum, that is

min(τ̂j(X̂
i)) > min(τj(X

i)). (3.4)

Note that the subscripts are associated with the cells and the superscripts are asso-

ciated with the nodes.

The major task in the optimization is the gradient computation, which requires

repeated computations of the quality measures. A cost-effective way to compute the

gradient is desired. The gradient computation based on the divergence theorem is

used to approximate the uphill direction of the quality metric at the common node,

however, the method is applicable only for simple sub-mesh boundaries.

A closed path connecting the centroids of adjacent cells in a counterclockwise

direction is defined. This closed path generates a centroid dual cell, as shown in

Fig. 6. The divergence theorem applied for τ on the centroid dual cells

∫

A

∇τdA =

∮

∂A

τndl, (3.5)

34

is used to approximate the gradient at the common node, N i:

∇τ i ≈ Gi =
1

A

mi
∑

j=1

τj′nj′lj′ , (3.6)

where A is the interior area of the integral path, j ′ denotes the average between j and

j + 1, and mi is the number of cells of the sub-mesh i. Herein, the quality metric for

each cell is assumed to be associated with the centroid of the cell. The gradient is first

order accurate and thus exact for a linearly varying τ . The procedure for calculating

the gradient is similar to flux summation in the finite volume method [24].

If the centroid path cannot be defined, as it happens with tangled and inverted

sub-mesh cases, the gradient is computed using the perturbed τ [12]. For each cell

Tj of the sub-mesh, the gradient is approximated by

∇τj ≈
τ δxj − τj
δx

ex +
τ δyj − τj
δy

ey (3.7)

where ex and ey are the unit vectors in the x and y directions. The perturbed metrics,

τ δx and τ δy, are computed with the location of the common node perturbed by δx

and δy, respectively. The magnitudes of δx and δy are adjusted to the local scale,

i.e., 1% of the breadth of the sub-mesh. The gradient at the common node Gi is set

to

Gi = ∇τj∗ (3.8)

where cell j∗ has the minimum quality metric value

τj∗ = min{τj}, j = 1, .. ,mi. (3.9)

Once the uphill direction, Gi, of the quality metric is determined, the displace-

ment of the common node along the uphill direction is specified by γ iGi. Two pro-

cedures to compute γi are presented herein. The selection of the procedure depends

35

on the type of the sub-mesh.

For a simple sub-mesh case, centroid smoothing sets the initial location of the

common node at the centroid of the valid region. The centroid is not the optimal

point in most cases, but fairly close to it. Thus the search for the optimal node

location is limited to a small region near the current position.

The search for the new node location is accomplished as follows. A line is drawn

from the current node location in the uphill direction given by Eq. 3.6. The line

intersects the boundary of the valid region. The length between the current location

of the node and the intersection point determine the maximum dXi. An initial γi

can be set to a value such that γiGi becomes a fraction of the maximum dXi. In the

present implementation the value of the fraction is 10%.

If the initial translation of the node along Gi does not improve the minimum τ ,

the search distance is reduced by halving γi. The procedure repeats until the new

minimum is greater than the current minimum. The number of trials, however, is

limited to a fixed number of iterations.

A different methodology is used to calculate γi for non-simple or inverted sub-

meshes. The presence of a non-simple or inverted sub-mesh voids all validity of the

mesh. Therefore, it is critical to find the proper new location of the common node,

which will transform such a sub-mesh to a valid simple sub-mesh. Furthermore, when

a sub-mesh is not simple, the variations of the quality metrics appear to be extremely

sensitive to the displacement magnitude of the common node.

A new quality metric for a cell Tj can be approximated using Taylor series [12]

τj(X̂
i) = τj(X

i + γiGi)

= τj(X
i) + γiGi · ∂τj

∂X

∣

∣

∣

Xi
+H.O.T. (3.10)

36

where X̂i denotes the new location of node N i. Substituting the gradient term by

the gradient approximation Gj for a cell Tj, where Gj ≡ ∇τj, Eq. 3.10 becomes

τj(X̂
i) ≈ τj(X

i) + γiGi ·Gj. (3.11)

The value of the gradient ∇τj is approximated by the perturbed quality metric, as

shown in Eq. 3.7. For the cell Tj∗ with the current minimum τj∗, Eq. 3.11 can be

written as

τj∗(X̂
i) ≈ τj∗(X

i) + γiGi ·Gi (3.12)

where the second Gi term recalls the definition of the gradient for the cell with the

minimum quality measure, as shown in Eq. 3.8.

Equation 3.12 shows that the metric of the cell with the old minimum τj∗ will

always improve because the inner product of Gi and Gi is positive. The product

Gi ·Gj in Eq. 3.11, however, can be negative. When this occurs, the new τj decreases

for a positive γi. Therefore, when the product is negative, the decreasing metric

should be restricted by being equal to or greater than the improved value of the old

minimum metric. For a sub-mesh with mi cells, this condition implies

τj∗(X̂
i) ≤ τ(X̂i), 1 ≤ j ≤ mi, j 6= j∗, (3.13)

which can be expanded to

τj∗ + γiGi ·Gi ≤ τj + γiGi ·Gj. (3.14)

Finally, rearranging Eq. 3.14, the minimum γ i is

γi = min

{

τj − τj∗
Gi ·Gi −Gi ·Gj

}

, 1 ≤ j ≤ mi, j 6= j ∗ . (3.15)

where Gi ·Gj is negative. For negative G
i ·Gj, Eq. 3.15 yields a positive γi. When

37

Gi ·Gj is positive, Eq. 3.11 shows that a positive γ i is sufficient for the increase of

the quality metric.

Note that the minimum γi can be close to zero in some extreme cases. In such

a case, the magnitude of γiGi is compared to the sub-mesh length scale. If the mag-

nitude of the displacement given by the γiGi is smaller than a predefined threshold,

the next smallest γi can be used instead [12].

4. Edge swapping and node insertion

As shown in the previous section, there are limitations to using mesh smoothing for

star sub-meshes. Specifically, when an empty kernel case occurs, mesh smoothing

alone cannot guarantee a valid triangulation. Edge swapping and node insertion are

thus introduced to overcome the limitation of the mesh smoothing and to further

improve mesh quality.

Edge swapping is used to improve the quality of the unstructured mesh. Unlike

the mesh smoothing methods, edge swapping alters the connectivity. The present

study uses a slightly modified version of Lawson’s [46] edge swapping method. The

Lawson’s edge swapping method compares the minimum angles of two adjacent tri-

angle cells before and after the common edge is swapped. The edge is swapped only

if the new minimum angle is greater than the old minimum angle. Otherwise, the

current edge connectivity is kept.

The 2-D edge swapping technique is extended to the mapped mesh considered in

this study in the following manner. The mapped mesh has a single set of connectivity

information shared by all the layers. Specifically, given an edge from the connectivity

table, the corresponding edge can be found on every layer. Thus, two neighboring

triangle cells that share the edge can also be formed on every layer. These two

neighboring triangle cells form a “quad-tube”when they are stacked in the spanwise

38

direction. The decision to swap the edge is then based on whether swapping improves

the minimum measure among the quad-cells in the “quad-tube”.

Herein Lawson’s method is modified by replacing the maximization of the mini-

mum angle criteria with the quality measure τ . By using the quality measure τ , edge

swapping becomes consistent with mesh smoothing in the sense that both procedures

maximize the minimum quality measure. Note that the quality measure, τ , includes

information on the mesh angle values. The criteria based on the quality measure τ

are more general than the criteria based on the maximization of the minimum angle,

since the former also include information on the cell area and edge length.

Mesh smoothing improves the mesh greatly, but the improvement is limited by

the connectivity restriction between layers. Edge swapping, however, modifies the

connectivity of the smoothed meshes. A swapped edge alters the sub-meshes associ-

ated with all four nodes of the “quad-cell”, and further mesh smoothing may become

necessary. Because mesh smoothing and edge swapping are coupled, they can be

applied alternatively until (1) edge swapping is no longer necessary and (2) the node

movement and/or the variations in the quality measure are smaller than some given

limits.

When a source mesh is generated using a certain airfoil cross section, the con-

nectivity of the resultant unstructured mesh is optimal with respect to the criteria of

the mesh generator. For example, if Delaunay triangulation is used, the connectivity

corresponds to the best max-min angle possible for the given distribution of nodes.

When nodes are forced to move to new locations, as occurs with the mapping and

smoothing procedures, the connectivity is no longer optimal. Edge swapping reduces

the dependency of the overall mesh quality on the choice of the source mesh. As a

result, the influence of the spanwise location of the source layer on the final global

mesh quality is diminished.

39

To enhance mesh quality, node insertion is also employed. Recall that for the

empty kernel case, introducing a new node or Steiner point can remove the inverted

cells. Furthermore, node insertion at a later stage of the mesh generation process

makes it possible to start from a coarse source mesh. This reduces the work load for

mesh smoothing and edge swapping. Once the mesh is “converged”, additional nodes

can be inserted where the resolution of the mesh does not meet the predefined length

scale.

The number of newly added nodes is controlled by calculating a quality measure

or “score”for each cell and then sorting the cells based on these scores. Then a

predetermined number of nodes is placed on the worst cells first. As is the case with

edge swapping, node insertion also alters the connectivity of the mapped mesh. The

sorting procedure examines the “score”for each triangle cell in a “triangle-tube”that

spans from hub to tip.

While the circumcircle center of a candidate triangle cell is often the preferred

site for a new node [47], herein, for simplicity, the centroid of a triangle cell is used

for a new node location. Only a fraction of the total number of new nodes are added

at each step. The whole procedure repeats until all the intended number of nodes are

added, and the mesh smoothing and edge swapping are completed.

B. Flow solver

The numerical methods for solving the Navier-Stokes equations are discussed in this

section. The governing equations are discretized using the Finite Volume Method

(FVM) which takes advantage of an integral formulation of the conservation equa-

tions.

The solver is developed for unstructured meshes of mixed elements in a cell-vertex

40

approach. In this method, the conservative variables are assumed to be stored at the

vertices of the mesh. The state variables stored at a vertex represent the control

volume averaged values about the vertex, where the control volume about the vertex

is defined by the median dual cell.

The flux integral on the surface of a cell, which can be any arbitrary polyhedral,

is approximated by the sum of numerical quadratures on the faces of the cell. The

inviscid flux is resolved using the Godunov method [48]. The gradient of state vari-

ables is computed using the least-squares method [25]. The computed gradients are

used for the reconstruction and the viscous flux computation. Higher-order spatial

accuracy is achieved using a piece-wise linear reconstruction [25].

The piece-wise linear reconstruction can cause solution oscillations near strong

discontinuities. The spurious solutions can be avoided using limiter functions. An

original multi-dimensional limiter function for unstructured meshes is credited to

Barth and Jespersen [25]. The Barth limiter, however, is sensitive to small variations

of the solution in the smooth solution region [26]. The Barth limiter is highly dissi-

pative [49]. Venkatakrishnan’s limiter is employed herein to avoid the activation of

limiting due to the noise in the smooth solution region and to damp the oscillations

at strong discontinuities. [26].

Once the flux integral is numerically solved, the discrete form of the governing

equations are integrated in time as a system of ordinary differential equations. In this

work, the time integration of the resultant ODE’s is performed by an explicit scheme

with optimal coefficients [50]. This time integration uses a multi-stage method that

is slightly different from Runge-Kutta method. This integration scheme is designed

for storage efficiency. [51] The explicit method requires smaller time steps compared

to the implicit method. The time step limitation is known as the Courant-Friedrichs-

Lewy (CFL) condition [52]. Despite this limitation, the method is well suited for

41

unsteady simulations for which time accuracy is of importance. In addition, the

explicit method is easier to implement than the implicit method. For steady solutions,

the ODE’s are integrated as an unsteady solution until the rate of change of the

conservation variables becomes negligible. To enhance the convergence rate, local

time stepping [51] and implicit residual smoothing [53] are employed.

The numerical methods mentioned above will be presented in detail in the follow-

ing discussion. This discussion will be divided into three parts: the spatial discretiza-

tion, the temporal discretization and the boundary conditions. The flux evaluation,

gradient computation, and piece-wise reconstruction will be presented in the spatial

discretization section. This will be followed by the temporal discretization method,

which includes time integration and implicit residual smoothing.

1. Spatial discretization

a. Introduction

This section reviews the issues related to the flow solver implementation for an un-

structured mesh. To perform the numerical computation of the Navier-Stokes equa-

tions, the discretized form of the equations is solved for a finite set of the conservative

state variables, ui = [ρ, ρu, ρv, ρw, ρE]Ti . In the FVM, adopted in this work, a mesh is

constructed over the domain of interest which results in non-overlapping polyhedrons

defining the control volumes. The governing equations are then solved simultaneously

for each control volume. The mesh is constructed by tessellating the computational

sites or nodes in such a way that the actual geometry is well approximated and the

density of the nodes increases in the regions of high solution gradients.

Mesh local clustering is often necessary to resolve the geometry of complex

boundaries and is used to achieve local mesh adaptation in regions of high solu-

42

tion gradients. Localized mesh enrichment is easier for an unstructured mesh than

a structured mesh due to its flexible data structure. A disadvantage of using an

unstructured mesh is that it requires explicit connectivity information. Structured

meshes do not need connectivity information since they utilize the inherent connec-

tivity information in their data structure. While the inherent connectivity definition

simplifies structured mesh solvers and reduces their storage requirement, it is this

strongly coupled relationship between the data structure and the mesh that makes

a structured mesh difficult to use for complex geometry. A traditional structured

mesh does not permit local addition or removal of mesh elements without disrupting

its data structure. A structured mesh, however, can always be represented as an

unstructured mesh. Therefore, despite the added cost associated with connectivity

information, the flow solver herein uses an unstructured mesh for its generality.

The unknown state variables can be defined either at cell center or at nodes.

Depending on where the average state variables are stored, a FVM implementation

can be classified as a cell-centered or a cell-vertex approach. The present work employs

the cell-vertex approach, in which the volume averaged state variables are stored at

the vertices of meshes [24].

The computational cost in the FVM can be roughly approximated by the total

number of unknowns. For a typical volume mesh composed of tetrahedral cells, the

ratio of the number of cells to the number of nodes ranges approximately from 5 to

6 [18]. This implies that the overall cost for the cell-vertex method is smaller than

the cost for the cell-centered method.

Unlike a cell-centered method, the control volumes about vertices in a cell-vertex

method are not naturally defined by the mesh. A cell-vertex method typically employs

dual cells to define the control volumes about nodes. Figure 7 shows a two-dimensional

example of dual cells: median and centroid. The first-order stencil of a node is the

43

N0 N0

(a) Median dual cell, Dm (b) Centroid dual cell, Dc

Fig. 7. Two-dimensional example of median and centroid dual cell for a node N0.

Solid lines denote the boundary of dual cells and thick dotted lines denote the

boundary of the first-order stencil S1N0
of node N0.

collection of cells which share the common node. In Fig. 7, the first-order stencils

for node N0 are denoted by thick dotted lines and the dual cells are defined by solid

lines. Fig. 7 also shows that the areas of the dual cells are the sum of the fractional

areas of the triangular cells in the first-order neighbor.

The boundaries of the median and centroid dual cells run from the centroid of

a cell to the centroid of the adjacent cell. For the median dual cell, the boundary

edges pass through the mid point of the edge shared by two neighboring cells resulting

in two line segments per edge. For the centroid dual cell, the boundary edges run

directly between centroids.

For a three dimensional case, a median-dual cell is formed by the surfaces crossing

the mid-edges and the centroid of cells. Examples of median-dual cells are shown in

Fig. 8. The volume contributions from a hexahedral cell and prism cell to a vertex i are

shown in Fig. 8(a)-(b), respectively. A dual-cell can be formed with a set of neighbor

cells of arbitrary polyhedrons. Because of this generality of the cell definition, the

method is well suited for the mixed element meshes [54].

44

i

j1

j2

j3

i−j1

i−j2

i−j3

fc1
fc3

fc2

cc1

(a) Prism case.

i

j1

j2

j3

i−j1

j−j2

i−j3

fc1

fc2

fc3

cc1

(b) Hexahedral case.

Fig. 8. Median-dual cells. The volume contributions to a median-dual cell for a vertex

i are shown. Sub-cells are defined by the surface crossing the cell centroid cc,

face centroid fc and mid-edge points i-j.

The area of the cell interface and the volume of a dual cell are computed in

the following manner. For simplicity, a two-dimensional case is considered first. The

dual cells shown in Fig. 7 define the control volume of node N0 in the cell-vertex

method. For a centroid dual cell, there is an one-to-one relationship between the

boundary segments of the dual cell and the edges. The one-to-one relationship permits

association of the length of the dual cell boundary segment and the outward normal

vector to an edge.

For a median dual cell, each edge is crossed by two-segments of the dual cell

boundary. For simplicity, the two normal vectors can be averaged into a single normal

vector. Similarly, the length of the two-segments can be summed up such that the

two-segments are approximated by a single segment. The area of the dual cell is the

sum of the quadrilateral contributions from the node sharing cells.

In the 3-D case, an area vector can be associated with an edge. The area vector

45

i

j

Fig. 9. Face area contributions (shaded area) from two hexahedral cells to an edge eij.

associated with an edge is computed by accumulating the area contribution from the

cells which share the edge. Figure 9 shows two shaded quadrilateral faces. These

two areas are the contributions from two adjacent hexahedral cells to edge, eij. The

area contribution from a cell is always a quadrilateral regardless of the type of donor

cell. Since the vertices of the quadrilateral are not always coplanar, a quadrilateral

face is always decomposed into two triangles faces to compute the total area of the

quadrilateral face.

The volume of a cell can be computed in a similar way. The volume contribution

from a node-sharing cell is always a hexahedral. A hexahedral cell can be subdivided

into 6 tetrahedral sub-cells. A segment of pseudo-code for area and volume compu-

tation is given below. The procedure assumes the following connectivity data are

available: cell to face, face to edge and edge to nodes.

area = 0 /* area vector */

volume =0 /*dual cell volume */

do cell c

do face f(c)

do edge e(f(c))

46

v1 = vector(me,cc) /* Mid-Edge -> Cell Centroid */

v2 = vector(me,fc) /* Mid-Edge -> Face Centroid */

atri = cross_product(v1,v2)

area(e) = area(e) + atri /* atri=triangle contribution */

10 vol(n1(e)) = atri*|e|/2 /* e=(n1,n2) */

vol(n2(e)) = atri*|e|/2 /* |e| = edge length */

od

od

od

normal(e) = area(e)/|area(e)| /* normal vector */

The area contribution atri is a triangle defined by a cell centroid, face centroid,

and the midpoint of an edge. A face of a median dual cell consists of an arbitrary

number of faces which typically do not have a common normal vector. The normal

vector normal on a face is approximated by the sum of the area-weighted vectors.

An operation similar to the area vector accumulation can be performed with an

edge loop only, eliminating the need for the cell-face loop. Collectively, this type

of operation is called an edge-based method, which is a popular technique to take

advantage of the data structure of the unstructured mesh [25, 1, 55]. The present

work uses the edge-based method.

The area vector is defined in the direction of the edge vector such that the inner

product of the area vector and the edge vector is positive. Since an edge is defined in

terms of two vertices, the direction of the edge vector is defined positively from the first

node of the edge to the second node. This convention simplifies the implementations of

edge-based procedures which allows a 3-D procedure to be applied in an 1-D manner.

By temporarily rotating an edge in the area normal direction, one can associate the

first and the second vertices of an edge as the left and right vertices. This technique,

47

called “grid-aligned method” [56], is used in the inviscid flux computation that will

be discussed later in this chapter.

b. Integral formulation

The Navier-Stokes equations are discretized using the FVM. The main difference be-

tween Finite Difference Method (FDM) and FVM is the form of the equations each

method is based on: FDM is developed from the differential form of the conservation

equations whereas FVM is based on the integral form. For a generic scalar conserva-

tion equation, the differential form is

Du

Dt
+ F (u)i,i = 0 (3.16)

where (·), i ≡ ∂(·)/∂xi, and the integral form is

D

Dt

∫

Ω

udΩ +

∫

∂Ω

F (u)inidΩ = 0. (3.17)

The weak form of the generic scalar conservation equation is

D

Dt

∫

Ω

φudΩ−
∫

Ω

φ,iF (u)idΩ =

∫

Ω

φF (u)inidΩ. (3.18)

Eq. (3.18) reduces to Eq. (3.17) if the test function is constant, i.e., φ,i = 0. The

integral form can be viewed as a weak formulation of the Finite Element Method with

a constant test function.

c. The Navier-Stokes equations in the rotational frame of reference

The Navier-Stokes equations in the rotational frame of reference include the additional

terms due to the rotation of the axes [57], pp. 16-18. The integral form of the equations

48

in terms of absolute variables [58, 36] are

∂

∂t

∫

Ω

UdΩ +

∮

S

F · ndS =

∫

Ω

GdΩ. (3.19)

U is the state vector of the absolute conservative variables

U =

ρ

ρu

ρv

ρw

ρE

. (3.20)

The flux vector, F, can be split into the convective part, Fc, and the viscous part,

Fv,

F = Fc + Fv. (3.21)

The convective part of the flux is

Fc =

ρV

ρuV + nxp

ρvV + nyp

ρwV + nzp

ρHV + Vgp

(3.22)

where V is the contravariant velocity and Vg is the rotational velocity component

in the normal direction, n. Taking into account the velocity of the moving frame

rotating at an angular velocity of Ω,

V = (v − vg) · n (3.23)

49

where vg is the rotational velocity of the frame

vg = r×Ω. (3.24)

The normal component of the frame velocity is

Vg = vg · n = (r×Ω) · n. (3.25)

The source term due to the rotation in Eq. (3.19) is given by

G =

0

(ρu×Ω) · ex
(ρv ×Ω) · ey
(ρw ×Ω) · ez

0

(3.26)

where ex, ey and ez are the unit vectors in Cartesian coordinates. Assuming the

rotation about x-axis only, the rotational velocity becomes

Ω =

ωx

0

0

, (3.27)

which simplifies Eq. (3.26) to

G =

0

0

ρωxw

−ρωxv

0

. (3.28)

50

The viscous flux is invariant in the rotational frame

Fv =

0

nxτxx + nyτxy + nzτxz

nxτyx + nyτyy + nzτyz

nxτzx + nyτzy + nzτzz

nxΘx + nyΘy + nzΘz

(3.29)

where the viscous stress work and the heat conduction term, Θ are

Θx = uτxx + vτxy + wτxz + λ∂T
∂x

Θy = uτyx + vτyy + wτyz + λ∂T
∂y

Θz = uτzx + vτzy + wτzz + λ∂T
∂z
.

(3.30)

The thermal conductivity coefficient, λ in Eq. (3.30) is

λ = cp
µ

Pr
(3.31)

and Pr is Prandtl number and Pr = 0.72 for air. The components of the viscous

stresses are

τxx = 2
3
µ(2∂u

∂x
− ∂v

∂y
− ∂w

∂z
)

τyy = 2
3
µ(2∂v

∂y
− ∂w

∂z
− ∂u

∂x
)

τzz = 2
3
µ(2∂w

∂z
− ∂u

∂x
− ∂v

∂y
)

τxy = τyx = µ(∂u
∂y

+ ∂v
∂y
)

τyz = τzy = µ(∂v
∂z

+ ∂w
∂y
)

τzx = τxz = µ(∂w
∂x

+ ∂u
∂z
).

(3.32)

d. Semi-discrete form of the Navier-Stokes equations

A semi-discrete form of the Navier-Stokes equations is presented. The term semi-

discrete herein implies that only the part of the Navier-Stokes equations in a con-

51

tinuous form is approximated by the numerical approximations. Specifically, the

conservative variables are represented as an average value at a point and the spatial

operators, such as the integrations in space, are approximated by numerical quadra-

tures.

An inspection of Eq. (3.19) shows that the temporal change of conserved vari-

ables U integrated over a volume Ω is due to the surface integral of flux F and the

volume integral of the source G. Once the surface and volume integrations are nu-

merically approximated, Eq. (3.19), which is a system of partial differential equations

(PDE), can be transformed to a system of ordinary differential equations (ODE) in

time [23, 59]. The advantage of the approach is that the spatial and the temporal

approximations of Eq. (3.19) can be made independently.

Given a polyhedral control volume, ci, the cell average of the conservative vari-

ables is defined as a volume-averaged variable

ui ≡
∫

Ωi
UdΩ

Ωi

(3.33)

where Ωi is the volume of cell ci. It is assumed that the averaged variables, ui, are

stored at the cell center, which is the vertex of the mesh in the cell-vertex method.

The volume average of the source term is approximated by

gi ≈
∫

Ωi
GdΩ

Ωi

(3.34)

where the source term is evaluated at the vertex.

Let nj be the outward normal vector, and let Aj be the area of a cell face. Then,

the surface integration of the flux vector for control volume, ci, can be approximated

by
∮

∂Ωi

F · ndS ≈
mi
∑

j

fj · njAj (3.35)

52

where mi is the number of faces defining the control volume, ci. fj is a numerical

flux which approximates the physical flux F. Note that the numerical flux must be

evaluated on the cell faces.

As noted in the previous section, the surface area Aj of a face sj is the sum of

area contributions from the nj number of cells which share a common edge

Aj ≡
nj
∑

k

Âk (3.36)

where Âk is the quadrilateral area contribution from the edge-sharing cells. The

normal vector for the face sj is based on the area-weighted vector sums

nj ≡
∑nj

k n̂kÂk

Aj

(3.37)

where n̂k is the normal vector on the contributed faces. Using Eq. (3.37), the sum

of the flux quadratures on the contributed surfaces can be approximated by a single

flux evaluation on the combined face, njAj,

nj
∑

k

fk · n̂kÂk ≈ fj · njAj (3.38)

where the error in the approximation is negligible for a first-order and second-order

solution. When the solution is assumed to vary quadratically or higher, the summa-

tion of fluxes on sub-surfaces Âk cannot be substituted by a single quadrature as in

the right hand side of Eq. (3.38) [60, 61]. Once the surface and volume integrations

are approximated, Eq. (3.19) becomes

∂

∂t
(uiΩi) +

mi
∑

j=1

fj · njAj = giΩi. (3.39)

So far, an approximation has not been made for the differentiation in time.

Mesh deformation in time is not considered in this work. The temporal change

53

of a cell volume is zero for a rigid mesh, which further simplifies Eq. (3.39) to

∂

∂t
(ui) = −

∑mi

j=1 fj · njAj + giΩi

Ωi

. (3.40)

This simplification cannot be made for a deforming mesh. In such a case, a temporal

change of cell volume and the movement of surface of control volume must be consid-

ered. Geometric Conservation Law formalizes the procedures a conservative method

must satisfy when dealing with a deforming mesh [62, 49].

The numerical method used for convective flux computation is presented next.

e. Inviscid flux

As the Reynolds number increases, the viscous effects are confined to the regions

close to the wall, and the role of the inviscid flux dominates the remainder of the flow

field. Therefore, the accurate resolution of the inviscid flux is crucial in the numerical

simulation of the Navier-Stokes equations. In this work, the Godunov method, which

is an upwind method for hyperbolic equations, is employed to resolve the inviscid

flux. Specifically, the Riemann problem in the Godunov method is solved using the

Roe’s approximate Riemann solver [19, 20].

The nonlinear nature of the Riemann problem makes the exact solution rather

expensive. Since the solutions are required repeatedly, a cost effective approximated

solver is typically employed. The use of the approximated solver is further justified

by the inherent numerical error in the Godunov method due to the averaging at the

projection stage.

Instead of solving the nonlinear problem, Roe’s approximate Riemann solver

solves a linearized version of the problem. The Roe’s solver is one of the most widely

used method because of its proven accuracy and low numerical dissipation. The

latter property of Roe’s method is known to play a important role in resolving of

54

the boundary layer, for which excessive numerical dissipation can ruin the solution

accuracy.

Roe’s Riemann solver is based on 1-D physics and it does not produce a true

multi-dimensional solution. For the multi-dimension problem, the 1-D method is

extended using the grid aligned method [56], pp. 573-579. In this approach, the

multi-dimensional physics can be approximated with the 1-D method by rotating

the local coordinates temporarily such that they align with the local mesh interface.

The technique is widely used despite shortcomings such as the misinterpretation of a

misaligned discontinuity.

The inviscid flux from Roe’s approximate Riemann solver [19, 20] is defined in

terms of the two states across a median-dual cell face, uL and uR,

fc =
1

2

[

Fc(uL) + Fc(uR)− |Ã|∆uR,L
]

(3.41)

where |Ã| is the flux Jacobian with respect to the conservative variables and ∆(·) =

(·)R − (·)L is the difference between the right and left states. The tilde symbol in

|Ã| indicates that the Jacobian is evaluated using averaged state variables that are

constant and therefore the solution is based on a linearized equation. Roe’s density

weighted averages defined as [19]

ρ̃ =
√
ρRρL

ũ = (uL
√
ρL + uR

√
ρR)/(

√
ρL +

√
ρR)

ṽ = (vL
√
ρL + vR

√
ρR)/(

√
ρL +

√
ρR)

w̃ = (wL
√
ρL + wR

√
ρR)/(

√
ρL +

√
ρR)

H̃ = (HL
√
ρL +HR

√
ρR)/(

√
ρL +

√
ρR)

Ṽ = ũnx + ũny + ũnz − Vg.

(3.42)

It can be shown that the flux Jacobian with respect to primitive variables is sparse.

55

Repeating the matrix-vector multiplication for the dissipation term is therefore inef-

ficient. The dissipation terms can be pre-multiplied by |Ã|∆uR,L and expanded as a

vector sum for the computational efficiency [23], pp. 106-107,

|Ã|∆uR,L = |Ṽ |
(

∆ρ− ∆ρ

c̃2

)

1

ũ

ṽ

w̃

(ũ2 + ṽ2 + w̃2)/2

+ |Ṽ |ρ̃

0

∆u−∆Ṽ nx

∆v −∆Ṽ ny

∆w −∆Ṽ nz

ũ∆u+ ṽ∆v + w̃∆w − Ṽ∆Ṽ

+ |Ṽ − c̃|
(

∆p− ρ̃c̃∆Ṽ
2c̃2

)

1

ũ− c̃nx
ṽ − c̃ny
w̃ − c̃nz
H̃ − c̃Ṽ

+ |Ṽ + c̃|
(

∆p+ ρ̃c̃∆Ṽ

2c̃2

)

1

ũ+ c̃nx

ṽ + c̃ny

w̃ + c̃nz

H̃ + c̃Ṽ

.

(3.43)

Roe’s approximated Riemann solver admits an expansion shock because vanish-

ing viscosity does not provide enough diffusion. The instability of the Roe Riemann

56

solver in particular cases is also well documented [63, 64, 65]. The present works

uses Harten’s entropy fix [66]. The fix modifies the definition of the eigenvalue such

that the eigenvalue never reaches 0. Whereas the numerical dissipation provided by

Roe’s method is proportional to the magnitude of eigenvalue, the Harten’s fix adds

non-vanishing dissipation to remove the expansion shock and the instability problem

at the expense being more dissipative.

f. Gradient computation

This section discusses the computation of the gradient operator on an unstructured

mesh. The viscous flux is defined in terms of the gradients of the velocity components

and the temperature. The diffusion terms in the k−ω turbulence model also require

the gradient of the k and ω field. For these reasons, it is important to employ an

accurate method for gradient computation.

The finite difference method is the one of the most widely used techniques to

compute the gradient. The method relies on the spatially ordered placement of data

points such as a 5-point stencil (north, east, west, south, and center) in a 2-D case.

The stencils for an unstructured mesh are not ordered as the stencils of a structured

mesh. If an extra neighbor is added in the 5-point stencil example mentioned above,

the stencil pattern falls outside of the regular pattern used in the finite difference

scheme. One attempt to compute the gradient on an unstructured mesh using fi-

nite difference techniques is found in Campbell et al. [67]. The suggested discrete

operators are limited to two dimensional unstructured meshes and they are based on

trigonometric functions, which appear to be too complex for general applications. It

is therefore easy to conclude that a different strategy should be taken to compute the

gradient on an unstructured mesh.

The gradient computation method should be efficient both in speed and storage

57

and the method should be accurate. The Green-Gauss method and the least-squares

method are the two most widely used techniques to compute the gradient on unstruc-

tured meshes because they meet the properties mentioned above. Both the Green-

Gauss and the least-squares methods are point-wise methods and can be programmed

using edge-based operations.

The Green-Gauss method estimates the gradient of a generic scalar variable Φ

by a discrete form of the divergence theorem which states

∫

Ω

∇ΦdΩ =

∮

∂Ω

ΦndΩ. (3.44)

The gradient of ∇Φ at node ni can be approximated as

∇Φi =
1

Ωi

∑

j∈S1
ni

h(Φi,Φj,nij, Aij), (3.45)

where Ωi is the volume of a dual cell associated with node ni and S1ni is the first-order

stencil with respect to the node ni. Function h in Eq. (3.45) is defined as

h =

1
2
(Φi + Φj)nij if e(ni, nj) is an internal edge,

1
2
(Φi + Φj)n

′

ij +
1
2
(5
6
Φi +

1
6
Φj)n

B
ij if e(ni, nj) is a boundary edge.

(3.46)

n
′

ij and n
B
ij denote the normal vectors at the quadrature points on the dual cell surfaces

which are associated with a boundary edge e(n0, ni), as shown in Fig. 10. In this

figure, circles denote the quadrature points xqij for ni. Note that edges e(n4, ni) and

e(ni, n1) are boundary edges. Internal edges, e(ni, n2) and e(ni, n3), are associated with

single quadrature points xqi2 and xqi3 , respectively. Each boundary edge e(ni, nj) is

associated with two quadrature points, xBqij and x
′

qij
for j = 1, 4. Note that Eq. (3.45)

is exact for linearly varying Φ within a dual cell.

The Green-Gauss method has a slight advantage over the least-squares method

58

i 1

2

3

4 xBqi1

x
′

qi1

xqi2xqi3

x
′

qi4

xBqi4

Fig. 10. First-order stencil for 2-D Green-Gauss gradient computation.

in terms of speed and storage requirements. Both methods compute the gradient

accurately when Φ varies linearly [24]. The Green-Gauss method, however, fails to

produce accurate results at the nodes on the interface between different types of

elements [22, 23]. For a first-order stencil that consists of a mixed type of cells, the

surface integral can be taken about the boundary of the first-order stencil rather

than the boundary of a dual cell. This modification of the integral path increases

the truncation error since the volume of a first-order stencil is larger than the the

volume of a dual cell. Furthermore, extra storage of connectivity data is required to

describe the wider integral path. It is possible to devise a method that limits the use

of a wide integral path only when it is necessary, and maintains the smaller stencil

otherwise. This spruce up of the method, however, increases the complexity of the

solution algorithm. For this reason, the present work uses the Green-Gauss method

only if a mesh contains tetrahedral cells only. Otherwise, the least-squares method is

used. Next, the least-squares method is presented.

A generic scalar variable, Φ, at x can be expressed in a Taylor series as a function

of Φi at xi as

Φ = Φi + (x− xi) · ∇Φi +H.O.T. (3.47)

where H.O.T. is the truncation error. Suppose the node nj positioned at xj is one

59

of the nodes in the first order stencil S1
ni

of ni and that the variation of Φ is at most

linear within the first order stencil. Then, Eq. (3.47) can be rearranged as

(xj − xi) · ∇Φi = Φj − Φi, xj ∈ S1ni (3.48)

where the higher order term in Eq. (3.47) vanishes for a linear Φ. Suppose there are

ni first-order neighboring nodes, nj, of ni in S1ni . Since Eq. (3.48) holds for every node

nj, Eq. (3.48) can be written as a system of ni number of equations,

w1∆x1−i w1∆y1−i w1∆z1−i
...

...
...

wni∆xni−i wni∆yni−i wn−i∆zni−i

∇Φi =

w1(φ1 − φi)
...

wni(φni − φi)

(3.49)

where wj is an arbitrary weighting and ∆xj−i, ∆yj−i, and ∆zj−i are the x, y, and,

z-component of xj − xi, respectively. The number of neighboring nodes, which is the

same as the number of incident edges to ni, is most likely greater than 3 in a 3-D

mesh. The number of neighboring nodes is always greater than or equal to 3 because

a volume element requires at least 4 vertices. Therefore, the number of equations

are generally greater than the number of unknowns. When this occurs, Eq. (3.49)

becomes an over-determined system of equations and it is not possible to find an

unique solution that is exact for all equations simultaneously.

In symbolic form, Eq. (3.49) is

L∇Φ = f (3.50)

60

where

L =

[

L1 L2 L3

]

(3.51)

f =

w1(φ1 − φ0)
...

...

wn(φn − φ0)

. (3.52)

The solution that minimizes

||L∇Φ− f||2 (3.53)

can be computed as the solution of a least-squares problem. For Eq. (3.50), the

least-squares problem is defined by pre-multiplying Eq. (3.50) by LT , which is the

transpose of L, to Eq. (3.50)

LTL∇Φ = LT f . (3.54)

The gradient ∇Φ is then

∇Φ = Pf (3.55)

where

P = (LTL)−1LT (3.56)

such that

PL = (LTL)−1LTL = I. (3.57)

The matrix P is

P =
1

a

`22`33 − `23`23 −(`12`33 − `13`23) `12`23 − `13`22
−(`12`33 − `13`23) `11`33 − `13`13 −(`11`23 − `13`12)

`12`23 − `13`22 −(`11`23 − `13`12) `11`22 − `12`12

LT
1

LT
2

LT
3

(3.58)

61

where a is the determinant of LTL

a = `11`22`33 + 2`12`23`13 − `11`223 − `22`213 − `33`212 (3.59)

and `ij = Li · Lj.

The weighting coefficients wj in Eq. (3.49) are chosen. They can be functions of

the geometry and/or solution [24]. Using the distance between vertices, the weights

can be defined as

wj = ||xj − xi||−t (3.60)

for values of t = 0, 1, 2. Herein, the weighting coefficients are only functions of the

geometry, and t = 1 is used in the present study.

If one uses geometrical weights as in Eq. (3.60), L is a function of the distances

between nodes and it is not dependent on the data Φ. For a rigid mesh, not only is LT

constant, but so is P. The gradient can be computed efficiently if P is pre-computed.

The gradient obtained using Eq. (3.55) can suffer from numerical errors for an

extremely stretched mesh. Because of the high aspect ratio, the row vectors of the

orthogonalization can fail to span in all three directions. In a case of failure, more

accurate methods, such as QR decomposition or singular value decomposition, should

be used [68, 69].

During the code development, the gradient methods were tested independently

from the main solution algorithm. The tests were performed in the following man-

ner. A simple scalar field, whose gradient was analytical, was first prescribed on a

mesh. The Green-Gauss method and the least-squares method were subjected to the

prescribed field to estimate the gradient. The numerically computed and analytically

determined values at the vertices were then compared. The errors of the both meth-

ods were within machine-zero for the field defined by a first order polynomial. The

62

least-squares method in double precision accuracy produced the gradient result which

was within the round-off error range even for a mesh with cell aspect ratio as high as

50000.

g. Piecewise linear reconstruction

Piecewise linear reconstruction is used to achieve a higher-order spatial accuracy. For

linear accuracy, constant states are assumed within the cells and thus the left and

right states across the element face are the constant states from both sides. In the

piecewise linear reconstruction method the state variables at a cell are assumed to

vary linearly within a cell.

While the reconstruction yields the interface states Φ at higher-order spatial

accuracy, it can create an oscillatory solution at extrema. Limiters are used to avoid

oscillations [70, 24]. In a geometric sense, a limiter function acts as a slope controller

of the numerical gradients,

Φ(x) = Φ0(xi) + Ψni
∇Φni

· (x− xi) , (3.61)

where the limiter Ψni
∈ [0, 1] and x ∈ S1

ni
. To avoid creating a new extrema, the

reconstructed Φ(x) should be bounded by the local extrema

Φmin ≤ Φ(x) ≤ Φmax , (3.62)

where

Φmin = min
j∈S1

ni

[Φi,Φj] , (3.63)

Φmax = max
j∈S1

ni

[Φi,Φj] . (3.64)

The monotonicity of Φ can be satisfied by enforcing Eq. (3.62) at the quadrature

points xqij rather than at all x ∈ S1
ni
[25]. The limiter function Ψni

proposed by

63

Barth [25] is given by

Ψni
= min

j
Ψni,nj ,

where the intermediate result Ψni,nj is obtained at the quadrature point associated

with e(ni, ni),

Ψni,nj =

min(1, Φmin−Φi
Φ(xqij)−Φ

) ,Φ(xqij)− Φi < 0 ,

min(1, Φ
max−Φ0

Φ(xqij)−Φ
) ,Φ(xqij)− Φi > 0 ,

1 ,Φ(xqij)− Φi = 0 .

(3.65)

The states on the shared face are determined by retaining the first order term of

a Taylor series,

Φxqij
= Φi +

1
2
Ψni
∇Φi · (xj − xi)

Φxqji
= Φj − 1

2
Ψnj
∇Φj · (xj − xi).

(3.66)

Barth’s limiter given in Eq. (3.65) is very diffusive [49, 18]. The sensitivity of

the limiter function in the smooth region is known to stall the convergence [71]. A

limiter function developed by Venkatakrishnan is designed to be less sensitive to the

small variation of solution in the smooth region and is widely used due to its superior

convergence properties [71]. The limiter function is defined as

Ψi = minj

1
∆2

[

(∆2
1,max+ε

2)∆2+2∆2
2∆1,max

∆2
1,max+2∆

2
2+∆1,max∆2+ε2

]

: ∆2 > 0

1
∆2

[

(∆2
1,min+ε

2)∆2+2∆2
2∆1,min

∆2
1,min+2∆

2
2+∆1,min∆2+ε2

]

: ∆2 < 0

1 : ∆2 = 0

(3.67)

where

∆2 = 1
2
(∇Φi · eij)

Φmax = max(Φi,max{Φj})

Φmin = min(Φi,min{Φj})

∆1,max = Φmax − Φi

∆1,min = Φmin − Φi.

(3.68)

64

A small number, ε2 prevents the division by zero when the gradient is very small. In

the implementation, ε2 is set to be a function of the local length scale,

ε2 = (cδh)3 (3.69)

where c is a constant and δh is the local mesh length scale. The present work uses

c = 5 and (δh)3 = Ωi.

h. Viscous flux

The gradients computed by the Green-Gauss method and the least-squares method

are available at the vertices. The viscous flux, on the other hand, is evaluated at the

quadrature points which are mid-edge points.

One of the most popular methods to compute the viscous flux is based on the

Galerkin finite element method [72]. In this method, the viscous term is evaluated

using the Hessian matrix at the cell center. This eliminates the need for the viscous

flux evaluation on the cell faces. The method is an attractive choice if the mesh is

made of simplex elements only. The method, however, does not naturally extend to

a mesh with non-simplex elements, such as quadrilateral elements in 2-D, and prism,

pyramid, and hexahedral elements in 3-D [23]. This gradient computation method is

not pursued since the present work uses a mixed elements mesh.

One simple method to compute the gradient at the mid-edge point is to use the

arithmetic average of the gradients at the two ends of an edge [73]. The approach

can recycle the computed gradients from the linear reconstruction step and thus save

the computational cost. The arithmetic average of the gradients at the mid-point of

the edge eij is

∇Φ(i+j)/2 ≈
1

2
(∇Φi +∇Φj) (3.70)

65

where (i + j)/2 denotes the mid-edge point. The stencil for ∇Φ(i+j)/2 is an union

of the first-order stencils S1
ni
, S1

nj
of the nodes ni and nj. The resultant stencil con-

tains an increased amount of data, which in turn reduces the weightings of Φi and

Φj on the averaged gradient, ∇Φ(i+j)/2. The unfavored weightings cause the local

terms to eventually decouple from the averaged gradient and lead to severely reduced

accuracy [22].

Accuracy of the averaged gradient can be substantially improved by increasing

the weightings of ∇Φi and ∇Φj using the directional derivative. The directional

derivative along the edge eij is defined as

∂Φ

∂l
|(i+j)/2 ≈

Φj − Φi

|xj − xi|
. (3.71)

The final form of the modified average gradient [21, 22] is obtained by 1) sub-

tracting the gradient weight along an edge from the average gradient and 2) adding

the directional derivative,

∇Φ(i+j)/2 = ∇Φ∗(i+j)/2 − (∇Φ∗(i+j)/2 · êij)êij +
Φj − Φi

|xj − xi|
êij (3.72)

where

∇Φ∗(i+j)/2 ≡
1

2
(∇Φi +∇Φj) , (3.73)

êij is the unit vector in the direction from node ni to nj. In the present work,

Eq. (3.72) is used to compute the gradient of each component of a velocity vector and

of a temperature. The computed gradients are then used to evaluate the viscous flux

on dual-cell faces.

66

2. Temporal discretization

The residual Ri of a cell ci is defined as the right hand side of Eq. (3.40),

Ri = −
mi
∑

j

fj · njAj + giΩi. (3.74)

The explicit time integration of Eq. (3.40) can be defined as a system of ordinary

differential equations in time in terms of the residual,

un+1i = uni +∆tniR
n
i /Ωi (3.75)

where

∆tni = tn+1i − tni . (3.76)

The steady solution is obtained by solving the equations until the flow reaches

a steady condition and R becomes negligible. Time accuracy is not relevant for a

steady flow computation so that the computation is allowed to evolve in time using

a local time step, ∆ti. The local time step can speed up the convergence rate.

For a time accurate unsteady solution, a global time step should be used. There-

fore, the stable time step for the unsteady case is

∆tni ≡ min{∆tnj : j = 1, 2, . . . ,m} (3.77)

where m is the number of nodes.

The forward Euler integration in Eq. (3.75) is not stable. A multi-stage integra-

67

tion is used instead. The following four stages scheme is used herein

u
(0)
i = uni

u
(1)
i = u

(0)
i + α1∆tiRi(u

(0)
i ,∇u(0)i)/Ωi

u
(2)
i = u

(0)
i + α2∆tiRi(u

(1)
i ,∇u(0)i)/Ωi

u
(3)
i = u

(0)
i + α3∆tiRi(u

(2)
i ,∇u(2)i)/Ωi

u
(4)
i = u

(0)
i + α4∆tiRi(u

(3)
i ,∇u(2)i)/Ωi

un+1i = u
(4)
i

(3.78)

where the stage coefficients αi are

α1 = 0.1668

α2 = 0.3028

α3 = 0.5276

α4 = 1.0.

(3.79)

The viscous fluxes are evaluated at odd stages only for computational efficiency.

The time step, ∆ti, must satisfy the CFL condition. The time step is defined as

∆ti = σ
Ωi

(λxc + λyc + λzc)i + C(λxv + λyv + λzv)i
(3.80)

where σ is the CFL number and C = 4. The convective spectral radii [55] are

λxc = (|u|+ c)∆Ax

λyc = (|v|+ c)∆Ay

λzc = (|w|+ c)∆Az

(3.81)

68

and the viscous spectral radii [23] are

λxv = max
(

4
3ρ
, γ
ρ

)(

µL
PrL

+ µT
PrT

)

(∆Ax)2

Vi

λyv = max
(

4
3ρ
, γ
ρ

)(

µL
PrL

+ µT
PrT

)

(∆Ay)2

Vi

λzv = max
(

4
3ρ
, γ
ρ

)(

µL
PrL

+ µT
PrT

)

(∆Az)2

Vi
.

(3.82)

The variables ∆Ax, ∆Ay and ∆Az are the projections of the volume Ωi on the y− z,

z − x and the x− y planes [23]. They are defined as

∆Ax = 1
2

∑mi

j=1 |nx∆Aj|

∆Ay = 1
2

∑mi

j=1 |ny∆Aj|

∆Az = 1
2

∑mi

j=1 |nz∆Aj|.

(3.83)

a. Implicit residual smoothing

The time step can become very small and slow down the convergence, especially for

low speed flows and sonic conditions. Implicit residual smoothing adds an implicit

flavor into the explicit method by blending the residuals of the neighboring nodes [53].

This allows the solution to march in time at a larger time step than a non-smoothed

explicit method.

The modified residual, R′i, is defined for node ni as [53]

R′i =
Ri + ε

∑mi

j=1Rj

1 + ε
∑mi

j=1 1
(3.84)

where Ri and Rj are the current residuals at nodes ni and nj, respectively. mi is

the number of neighboring nodes in the first-order stencil for ni. The equations are

typically solved by a Jacobi iteration with ε = 0.5, which makes the system diagonally

dominant so that only a few iterations are required to reach an acceptable convergence.

69

3. Boundary conditions

This section presents the boundary conditions. The boundary conditions implemented

herein include solid wall, inlet, outlet, symmetric plane, and periodic boundary con-

ditions. In the present work, the inlet and outlet boundary conditions and the solid

wall boundary conditions for the continuity and the energy equations are applied

“weakly” [74] as conditions on the flux at boundary surfaces. Instead of being applied

directly to state variables, the boundary conditions are used to find the intermediate

state variables on the boundary faces. The intermediate state variables are then used

to evaluate the boundary flux.

On the solid wall, the contravariant velocity, V , in Eq. (3.22) is zero. This causes

the boundary flux for the continuity equation to vanish. The non-slip boundary condi-

tion for the Navier-Stokes equations makes the computation of momentum equations

on the wall unnecessary since the velocity on the wall can be directly determined from

the specified wall velocity. The energy flux on wall boundaries reduces to the sum

of pVg in Eq. (3.22) and ∇q · nB in Eq. (3.29). For an adiabatic wall condition, the

boundary flux for the energy equation further simplifies to pVg. If a grid is stationary,

the boundary flux for energy equation vanishes.

For subsonic inflow, the intermediate state variables on inlet faces are deter-

mined by one interior condition and four upstream conditions. For subsonic outflow,

the intermediate state variables are determined by four interior conditions and the

prescribed static pressure at outlet. For supersonic in/outflow, the intermediate state

variables on boundary faces are determined by upstream conditions only. Specifically,

the intermediate variables at the inlet are determined by the five freestream condi-

tions and the intermediate variables at the outlet are determined by the five interior

state variables.

70

The subsonic inlet boundary conditions are specified by 1) one Riemann invariant

based on the interior conditions and 2) four upstream conditions that include the

total pressure, p∗, the total temperature, T ∗, and two inlet flow angles, α and β.

These specified conditions are used to compute the intermediate state variables on

the boundary faces. The intermediate states are found in the following way. The

Riemann invariant based on the interior conditions is

R− = vi · nBi
− 2ci
γ − 1

(3.85)

where nB is a unit normal vector on the boundary and c is the speed of sound. The

total pressure and total temperature from the four upstream conditions are used to

compute the intermediate entropy and total enthalpy

s =
p∗

(ρ∗)γ
, H = γRT ∗

γ−1
. (3.86)

The Riemann invariant, R+, can be expressed as

R+ = R− +
4

γ − 1
c (3.87)

where c is an intermediate speed of sound that is not yet defined. In order to remove

c from Eq. (3.87), c can be expressed in terms of the total enthapy, tangential velocity

component to the boundary face, and the Riemann invariants,

c = (γ − 1)

√

H − u2t
2
− 1

8
(R+ +R−) (3.88)

where

ut = |vi| − vi · nBi
(3.89)

71

and the following relations are used

uB =
R+ +R−

2
(3.90)

c =
γ − 1

4

(

R+ −R−
)

. (3.91)

uB and c are the intermediate normal velocity and the speed of sound. Substituting

Eq. (3.88) into Eq. (3.87) results in a quadratic equation for R+ and a solution for

the quadratic equation is

R+ =
1

γ + 1

[

(γ − 3)R− + 4

√

H − u2t
2
− γ − 1

2
(R−)2

]

. (3.92)

Once R+ is computed, the intermediate normal velocity and the intermediate speed

of sound can be computed using Eq. (3.90). The intermediate density is computed as

ρ =

[

c2

γs

]
1

γ−1

. (3.93)

Finally, the components of the intermediate velocity are defined as

|u| =
√

u2B + u2t (3.94)

u = |u| cos(α) (3.95)

v = |u| sin(α) cos(β) (3.96)

w = |u| sin(α) sin(β) (3.97)

where α and β are the two prescribed inlet flow angles. Once the intermediate velocity

and two thermodynamic states, s and ρ, are defined on the inlet boundary face, these

intermediate values are used to evaluate the flux across the inlet faces.

The subsonic outflow boundary conditions consist of 1) the static pressure pb

specified on the outlet face and 2) the four conditions from the interior. Using the

specified pb and the entropy, tangential velocity, speed of sound, and total pressure

72

from interior conditions, the intermediate state variables can be defined in the fol-

lowing way. The intermediate pressure is equal to the specified backpressure

p = pb. (3.98)

The intermediate entropy and tangential velocity are assumed same as the interior

values

s = si, ut = |vi| − vi · nBi
. (3.99)

The Riemann invariants are

R+ = vi · nBi
+

2ci
γ − 1

(3.100)

R− = R+ − 4

γ − 1

√

γ (p∗)
γ−1
γ s

1
γ . (3.101)

The intermediate density and the intermediate velocity can then be computed using

the Riemann invariants as shown in Eq. (3.90)-(3.94). The computed intermediate

state variables are used to evaluate the flux across the outlet faces.

The flux through a symmetric plane is zero and the normal velocity on the

symmetric boundary is also zero. Because the normal velocity is zero, the tangential

component of the normal velocity gradient must also vanish

tivi,jnj = 0 (3.102)

where ti is a unit vector in tangential direction and nj is a unit normal vector. Since

the flow is symmetrical with respect to the plane, the normal component of the

tangential velocity gradient should vanish on the wall

nivi,jtj = 0. (3.103)

73

The normal components of gradients of scalar variables along the symmetric boundary

must vanish

niφ,i = 0. (3.104)

The symmetric boundary conditions can be implemented in the cell-vertex method

by 1) correcting the gradient components as is done in Eq. (3.102)-(3.104), 2) skipping

the flux computations on the symmetry boundary faces such that zero flux condition

on the boundary is enforced and 3) subtracting the normal components of the resid-

ual vectors for the momentum equations to ensure the zero normal velocity on the

boundary

Ri = Ri − niRjnj, 2 ≤ i ≤ 4, 1 ≤ j ≤ 5 (3.105)

where Ri is the residual vector.

The periodic boundary conditions are implemented for both translational peri-

odic boundaries and rotational periodic boundaries. For a set of translational periodic

boundaries, a vertex on the “master ”boundary is related to its pair vertex on the

“slave ”boundary by

xiS = xiM +XM→S (3.106)

where XiS and XiM are the vectors that define the location of a slave and a master

vertex on periodic boundaries and XM→S is a vector that defines a translation from

a master boundary to its slave boundary. The state variables at a master vertex and

its slave vertex are equal by definition

uiM = uiS . (3.107)

74

In the present work, fluxes on periodic boundaries are not explicitly computed

RiM = −
miM
∑

j 6=j∗M

fj · njAj + giΩi (3.108)

RiS = −
miS
∑

j 6=j∗S

fj · njAj + giΩi (3.109)

(3.110)

where nj∗MAj∗M
and nj∗SAj∗S

denote the boundary faces areas on the master and slave

periodic boundaries, respectively. This implies that the flux sum to compute the

residuals for periodic boundary vertices are partially completed. The resultant partial

residuals for a master vertex and its slave vertex can be summed up at the master

vertex

R∗iM = RiM +RiS (3.111)

such that the total residual R∗iM represents the residual for the combined control

volume, Ω∗iM where

Ω∗iM = ΩiM + ΩiS . (3.112)

The (m)-stage equation of Eq. (3.78) can be written for the state variables of the

master vertex as

u
(m)
iM

= u
(m−1)
iM

+
αm∆t

∗
iM

Ω∗iM
R∗iM (3.113)

where t∗iM is a modified time step that takes into account of the combined control

volume. Specifically, the 2-D projection of the control volume in Eq. (3.83) must be

defined by the surface area vectors of the combined control volume. Volume term Ωi

in Eq. (3.80) and Eq. (3.82) must be replaced by Ω∗iM . Once the multi-stage time

integration is completed for uiM , the state variables of its slave vertex are updated

uniS = uniM . (3.114)

75

For a set of rotational periodic boundaries, a vertex on ’master’ boundary is

related to its pair vertex on ’slave’ boundary by

xiS = T3xiM . (3.115)

Assuming a rotation about x-axis only, T3 is defined as

T3 =

1 0 0

0 cos θ sin θ

0 − sin θ cos θ

(3.116)

where θ is the angle measured on y − z plane from the master boundary to the slave

boundary. The state variables at a master vertex and its slave vertex are related by

uiM = TuiS (3.117)

where

T =

1 0 0 0 0

0 1 0 0 0

0 0 cos θ sin θ 0

0 0 − sin θ cos θ 0

0 0 0 0 1

. (3.118)

The total residual at niM can be computed from the partial residual at the master

node, niM , and the slave node, niS

R∗iM = RiM +T−1RiS (3.119)

where R∗iM is the total residual accumulated at niM . Only uiM , which is the state

variables at niM on master periodic boundary, is directly computed using the total

76

residual, R∗iM . The (m)-stage equation of Eq. (3.78) for uiM is

u
(m)
iM

= u
(m−1)
iM

+
αm∆t

∗
iM

Ω∗iM
(RiM +T−1RiS). (3.120)

After each time step, the updated state variables at the master vertex are copied back

to the state variables of its slave nodes

u
(n)
iS

= Tu
(n)
iM
. (3.121)

C. Implementation of turbulence model

The k − ω turbulence model, Eq. (2.49)- (2.50), can be written in the integral form

as

∂

∂t

∫

Ω

WdΩ +

∮

∂Ω

[Γc − Γv] · ndS =

∫

Ω

ΠdΩ (3.122)

where

W =

ρk

ρω

Γc =

ρk (v − vg)

ρω (v − vg)

Γv =

(µ+ σkµT)∇k

(µ+ σωµT)∇ω

Π =

Pk −Dk

Pω −Dω + CDω

.

(3.123)

77

Γc and Γv are the turbulent inviscid flux and viscous flux, respectively. P is the

turbulent production as defined in Eq. (2.51) and

Dk = β∗ρωk (3.124)

Pω = γω
ω

k
Pk (3.125)

Dω = βρω2 (3.126)

CDω = (1− F1)
2ρσω2

ω
∇k · ∇ω. (3.127)

µT is the turbulent viscosity defined as

µT = α∗
ρk

ω
. (3.128)

The turbulence model Eq. (3.122) have the same form as the conservation form

of the Navier-Stokes Eq. (3.19). Consequently, the model equations can be solved

with the same numerical algorithms. The inviscid flux Γc is computed with the Roe’s

Riemann solver and the viscous flux Γv is computed with the average gradient.

The source term Π can be dominant in the k − ω model. The rapid change

of the source term causes the instability of the solution algorithms and the slow

convergence of solution. A remedy to the source term dominance is to treat the

source term implicitly [75, 23]. Consider a discrete form of the model equations in

Eq. (3.122).

wn+1
i = wn

i −
∆ti
Ωi

[

mi
∑

j=1

(Γn
c − Γn

v)jSj −Πn
i Ωi

]

(3.129)

where w is the volume average of W over a control volume ci. The source term Πn
i

can be evaluated at the next time level

I · (wn+1
i −wn

i) = −
∆ti
Ωi

[

mi
∑

j=1

(Γn
c − Γn

v)jSj −Πn+1
i Ωi

]

(3.130)

where I is the identity matrix.

78

The source term Πn+1
i in Eq. (3.130) can be approximated as

Πn+1
i ≈ Πn

i +

(

∂Π

∂w

)

i

∆wn
i . (3.131)

After plugging in Eq. (3.131) into Eq. (3.130) and rearranging terms, Eq. (3.130)

becomes
[

I

∆ti
−
(

∂Π

∂w

)

i

]

· (wn+1
i −wn

i) = −
1

Ωi

Ri (3.132)

where Ri is the residual and it is defined as

Ri ≡
mi
∑

j=1

(Γn
c − Γn

v)jSj −Πn
i Ωi. (3.133)

Eq. (3.132) can be rearranged for wn+1
i ,

wn+1
i = wn

i +
1

Ωi

[

I

∆ti
−
(

∂Π

∂w

)

i

]−1

·Ri. (3.134)

The (m)-stage in Eq. (3.78) is then defined as

w
(m)
i = w

(0)
i +

αk

Ωi

[

I

∆ti
−
(

∂Π

∂w

)(m−1)

i

]−1

·R(m−1)i . (3.135)

The diagonal terms of the Jacobian matrix ∂Π/∂w are approximated as

∂

∂k
(Pk −Dk) ≈ −

Dk

k
(3.136)

∂

∂ω
(Pω −Dω + CDω) ≈ −

|CDω|+ 2Dω

ω
. (3.137)

Note that the off-diagonal terms are not computed.

Using the approximations of the Jacobian matrix terms, Eq. (3.135) can be

rewritten as

w
(m)
i = w

(0)
i +

αk

Ωi

S ·R(m−1)i . (3.138)

79

The matrix S is

S =
∆ti
s1s2

s2 0

0 s1

, (3.139)

where

s1 = 1−Dk/k

s2 = 1− (|CDω|+ 2Dω)/ω.
(3.140)

Despite the implicit treatment of the source terms, the model equations can still

produce nonphysically large eddy viscosity in the region close to stagnation points

and during the initial iteration steps. Limiting the values of Pk and ω can reduce the

instability caused by the occasional spikes[76, 77, 78, 37, 31].

In the present work, the ceiling value for ω is defined by the Menter’s wall

boundary condition [75]

ωmax =
60νw
β∆y21

(3.141)

The value of ω is set to the maximum value defined as the above if ω exceeds the

limit. The production of the turbulent kinetic energy is limited by

Pk = min(Pk, 20Dk). (3.142)

In the following, the wall boundary conditions for the k−ω model are presented.

The turbulence kinetic energy is zero on the wall because of the vanishing fluctuating

velocity. On the other hand, the wall boundary condition of ω is not as simple as

for k and the boundary condition should be implemented carefully. For smooth wall

boundary, Wilcox [27], p. 343, suggests that exact solution of ω should be imposed

on the first few points from the wall in the viscous sublayer. The suggested value for

ω is given by

ωw ≈
Nwνw
y2

, y+ < 2.5 (3.143)

where Nw is a model dependent constant and νw is the kinematic viscosity on the

80

wall. This approach is not, however, suitable for an unstructured flow solver due to

the extended region of boundary condition updates.

An alternative approach is the rough-surface wall approximation [27], pp. 175-

177, which is given by

ωw =
2500νw
k2s

(3.144)

where ks is the sand grain height. The rough wall boundary condition simulates a

smooth wall if the wall-unit roughness height k+s = ksνw/u
∗ < 5. The rough-surface

wall boundary condition can be implemented in a different way using the grid spacing

∆y1 next to the wall [75]

ωw =
60νw
β∆y21

. (3.145)

D. Parallel implementation

This section presents the strategy adopted for the parallel computation of the flow

model. The present work employs the domain decomposition [79, 80, 38], the Single

Program Multiple Data (SPMD) approach [81], and the Message Passing Interface

(MPI) library [81, 82]. The combined strategy makes the solution algorithm portable

to a wide range of computational environments. For example, the implemented paral-

lel solver has been successfully tested on SGI Origin, IBM p690 and PC based Linux

clusters. In the following, the details of the parallelization strategy are presented.

The domain decomposition is performed as a pre-process step. At this stage, the

global mesh is partitioned into as many blocks as the number of available processors.

The practical number of partitions is, however, limited by the increasing communi-

cation overhead. An example of one-to-two partition is shown in Fig. 11 (a), which

also shows the shadowed portion of the block meshes is overlapped. The intersection

of the partitioned meshes set is referred to as the buffer layer. During the mesh

81

partitioning, the buffer layers are padded around the interfaces between the adjacent

blocks of the partitioned meshes. The buffer layers define the region where data are

exchanged between blocks.

The buffer layers consist of the master and the slave data points. Fig. 11 (b)

shows the slave data points as a solid line and the master data points as a dotted line.

The two arrows in the far right side of Fig. 11 (b) show the data dependency between

the block B1 and B2. Specifically, the master data points of BM
2 are identical to the

slave data points of the block BS
1 . The slave data are dependent on the master data

(BS
1 ← BM

2) and the same applies between the BM
1 and BS

2 (BM
1 → BS

2).

At each multi-stage time integration step, solutions are obtained at the active

data points only, which exclude the slave data points. For B1 in the example, the

solutions on the solid-lined BS
1 are not explicitly determined locally. Instead, the

data on BS
1 are updated from the solution data passed from the block B2. The data

transfer in the opposite direction must also be performed. The message passing is

carried out in a synchronized manner using a blocking communication in the MPI

standard.

The buffer layer in the present study is designed to have a single layer opposed to

the much more common double layers [38]. A single layer herein means that a slave

data point in a block mesh can be reached from a master data point in the same block

within an edge. The design goal behind this choice is to reduce the communication

cost. If one safely assumes that the double-layered buffer set contains twice as many

data points as the single-layer set, the amount of inter-boundary data exchange is

halved with the single-layer approach.

Most of the solution algorithms are compatible with the single-layer buffer. An

exception is the evaluation of the viscous flux, which requires the gradients on the

slave data points refreshed. The need for the gradient data roughly doubles the

82

amount of the required data exchange and it appears to cancel the communication

cost in the single-layer case. The slight reduction of the cost (approximately 10%)

is still possible with the single-layer case since the viscous flux does not depend on

the density gradient. For the latter case, the gradients at the active data points

can be computed from the local state variables only and this eliminates the need

for the gradients data passing. A significant reduction of the communication cost is

possible with the single-layer buffer because the viscous flux is not computed at every

multi-stage time integration. As noted in Eq. (3.78), for computational efficiency the

viscous flux is evaluated at odd stages only. This amounts to approximately 30%

reduction of the communication cost.

In the present work, the pre-processing step also produces a reverse mapping

from the partitioned meshes to global mesh. The table is used to map the global

mesh from the partitioned meshes such that the fragmented block solutions can be

later assembled into a single block solution.

83

(a) (b)

BM
1

BS
1

BS
2

BM
2

B1

B2

buffer

buffer

B1

B2
BM

1 → BS
2

BS
1 ← BM

2

Fig. 11. Example of one-to-two mesh partitions. (a) The shaded area is the buffer

layer (B1∩B2) between the block mesh B1 and B2. (b) The solid lines denote

the slave data points (BS
1 and BS

2) and the dotted lines denote the master

data points (BM
1 and BM

2).

84

E. Graphical user interface

The implementation of a Graphical User Interface (GUI) is presented. The GUI was

developed to enhance the usability of the flow solver. The major benefit of the GUI

is that it detaches the users from the complex input file format and allows them to

concentrate on the problems on hand.

The GUI is programmed in Tcl/Tk [83, 84, 85]. Tcl/Tk is an interpreted script

language. Once a program is written in the script form which is machine independent,

the program is portable to major operating systems such as Unix and Microsoft

Windows.

The flow solver written in FORTRAN 90 [86, 87, 88] and the GUI written in

Tcl/Tk are linked by a text file. The format of the text file is in FORTRAN name-

list. The text file serves as an output of the GUI program and the input of the solver.

Depending on the choices made through the GUI, the GUI records the current states

of user input in the file. This text file is then subsequently read by the solver. These

two independent processes appear to users as a single process, which results in an

unified look.

In the following, the GUI windows are shown and the description of the panels

are provided. Figure 12 shows an opening splash window, which greets the user and

disappears after a preset time. The main control panel is shown in Figure 13. The

main panel has two text boxes and eight sub-menu buttons. In the top text box, a

case title can be typed in. The second text box is for a file name, which can be used

to load the input file generated previously.

The sub-menu panels are accessed by pressing the appropriate buttons. The

screen shots of the sub-menu are shown in Figures 14 - 20. In order to prevent the

users from generating a faulty input file, the option buttons and input boxes which

85

are in conflict are designed to be inactive. An example is shown in Figure 15, which

shows a grayed second row buttons when inviscid flow option is chosen.

Fig. 12. GUI: Opening splash.

Fig. 13. GUI: Main panel.

86

Fig. 14. GUI: Flow model panel.

Fig. 15. GUI: Flow model panel. Inviscid option turns off laminar/turbulent options.

Fig. 16. GUI: Boundary condition panel.

87

Fig. 17. GUI: Solver control panel.

Fig. 18. GUI: Input/Output control panel.

Fig. 19. GUI: Geometry panel.

88

Fig. 20. GUI: Execution control panel.

89

CHAPTER IV

RESULTS

This chapter presents the computational results. In the first section, the results of the

hybrid mesh generator are presented. 1 The mesh generator is applied to a turbine

blade with an extremely large stagger angle variation to demonstrate that the mesh

generation method is capable of producing a hybrid mesh of an acceptable quality

even at extreme conditions. The validation cases of the flow solver follow the mesh

generation test.

The flow solver in the present study can handle inviscid, laminar, and turbulent

flows. As discussed in the previous chapter, the flow solver computes the inviscid flux

and the viscous flux separately. Moreover, the k−ω turbulence model is implemented

in a decoupled manner from the Navier-Stokes equations.

Only the convective flux must be computed for an inviscid flow case whereas

both the convective and the viscous flux must be computed for a viscous flow case. A

viscous case can be either laminar or turbulent. In the latter case, the k−ω turbulence

model is used to compute the eddy viscosity. In the laminar case, the eddy viscosity

is simply zero. The laminar flow case, therefore, relies on a subset of the flow solver

algorithms compared to the turbulent flow case. An inviscid case requires an even

smaller subset of the solver algorithms than what is required for a laminar case.

Noting the hierarchical dependency of the solution algorithms, the flow solver

is validated in the following three steps. In the first step, the flows are assumed

inviscid and the tests are performed to ensure the proper implementation of the

1Part of this chapter has been previously published in the AIAA Journal of Propul-

sion and Power [43] and copyrighted by the present author and Dr. Paul Cizmas.

90

Euler solver, of which the important parts include the convective flux computation,

the time integration algorithm, and the boundary conditions. The inviscid flow tests

include a supersonic vortex flow case and a transonic flow over a bump. It is noted

that an exact analytical solution exists for the supersonic vortex.

In the second step of the validation, a laminar boundary layer over a flat plate

is solved to demonstrate the proper treatment of the viscous flux. The results are

compared to the Blasius solution. In the third step of the validation, a turbulent

boundary layer over a flat plate is solved to ensure the proper implementation of the

turbulence model. This completes the preliminary test of the flow solver.

In the last section, the flow in a high speed centrifugal compressor is computed.

The model geometry of the high speed centrifugal compressor includes not only the

front wheel block, but also the backplate region. Based on the combined geometry,

the axial loads on the moving wheel are computed at various operating points. The

relationship between the leakage flow rates and the backpressure is also predicted.

A. Hybrid mesh generation for an axial turbine rotor

The hybrid mesh generation is tested on an axial turbine rotor blade shown in Fig. 21.

The variation of the airfoil cross sections at 20% span increments is shown in Fig. 22.

Mesh generation for this airfoil is challenging because of the large radial variation in

shape and size. What makes it even more difficult is the extreme variation of the

stagger angle, which is approximately 88 degrees.

The source mesh is generated at the hub. Figure 24 shows the source mesh

where only the unstructured region is displayed. The unstructured portion of the

2-D layer contains 480 nodes, excluding the common nodes between the O-grid and

the unstructured region. The mesh is rather coarse and additional nodes are to be

91

Fig. 21. Test case airfoil.

92

Fig. 22. Variation of airfoil cross sections.

added after the mapping and smoothing procedures are performed. The O-grid has

120 nodes along the airfoil and 10 nodes normal to the airfoil.

Mesh smoothing alone failed to eliminate the inverted cells on the layers close

to the tip. These inverted cells resulted due to the significant change of the airfoil

profile from hub to tip. Note that in this case the source layer was located at the

hub. The optimal connectivity for the source mesh caused too much restriction of the

mesh at the tip. Edge swapping was thus necessary to remove the constraints due to

the biased connectivity of the source mesh.

The first mapped layer was generated at 10% span from the hub. After mapping

and mesh smoothing, edge swapping was done for the hub and the layer at 10% span

simultaneously. By advancing the layers by 10% span each time, the connectivity

constraints were not as severe as in the initial attempt when the base mesh at the

hub was mapped to the target mesh at the tip. This procedure of adding one new

93

layer each time and applying the edge swapping was repeated until the tip layer was

reached. As a result, all the target meshes were successfully mapped and smoothed

while connectivity was continuously updated. Note that the 10% span spacing was

arbitrarily chosen and this spacing was not the actual spacing between the layers of

the final mesh.

The variation in cell size at the interface between the O-grid and the unstruc-

tured region was controlled by forcing the unstructured cells on the interface to form

equilateral triangles. On the tip layer, the node distribution was not dense enough

due to the fact that the area the nodes had to cover increased significantly compared

to the hub layer. The abrupt changes in cell size became problematic in the transition

region from the O-grid to the unstructured region of the tip layer. To correct this

problem, new nodes were added and smoothing and edge swapping were applied. The

results are summarized in Tables II and III. Table II shows the improvement in the

minimum angle, and Table III shows the improvement in the minimum quality mea-

sure. Because the mesh optimization was based on the quality metric τ rather than

on the minimum angle, the variation of τ shown in Table III provides a better image

of the mesh improvement than the values of the minimum angle shown in Table II.

Note that the minimum angle for mesh smoothing is not defined due to the presence

of the inverted cell.

The distribution of the quality measure τ as a function of the spanwise location is

shown in Fig. 23. Note that τ is 1 for an equilateral and 0 for a collapsed triangle. A

larger number of cells exhibited a low τ on the hub and tip layers than on the layers

near the mid-span. Note the similarity of the minimum τ distribution for all the

layers, which proves that edge swapping was effective in eliminating the dependency

of the quality of the target meshes on the source mesh. Mesh smoothing maximized

the minimum quality measure for every layer. Edge swapping corrected the initial

94

Table II. Minimum and maximum angle (MS, ES and NI denote mesh smoothing, edge

swapping, and node insertion, respectively).

Min. angle, Max. angle,

Case degree degree

MS n/a 179.8

MS + ES 3.5 150.0

MS + ES + NI 11.9 147.3

Table III. Minimum of the quality metric τ (MS, ES and NI denote mesh smoothing,

edge swapping, and node insertion, respectively).

Case Minimum τ

Mapping only -0.6994

MS -0.0643

MS + ES 0.2137

MS + ES + NI 0.2512

connectivity to an unbiased one that satisfied all the layers.

Figures 25 through 30 show the grid at five spanwise locations. Node insertion

removed the abrupt changes of cell size. By adding 400 new nodes, the total number

of nodes in the unstructured mesh increased to 880. Additional mesh smoothing and

edge swapping increased the minimum angle to 11.9 degrees from 3.5 degrees. The

computational time necessary to build a 3-D hybrid mesh containing 106,080 nodes

was approximately 5 minutes on a 600 MHz PC running Linux.

95

0

10

20

30

40

50

N
um

be
r

of
 c

el
ls

Hub 20% span

0

10

20

30

40

50

N
um

be
r

of
 c

el
ls

40% span 60% span

0

10

20

30

40

50

0 0.2 0.4 0.6 0.8 1

N
um

be
r

of
 c

el
ls

Quality measure, τ

80% span

0 0.2 0.4 0.6 0.8 1

Quality measure, τ

Tip

Fig. 23. Number of cells vs. quality measure τ .

96

Fig. 24. Source mesh at the hub.

Fig. 25. Hub layer.

97

Fig. 26. Layer at 20% span from the hub.

98

Fig. 27. Layer at 40% span from the hub.

99

Fig. 28. Layer at 60% span from the hub.

100

Fig. 29. Layer at 80% span from the hub.

101

Fig. 30. Tip layer.

102

B. Supersonic inviscid vortex flow in a circular channel

This section presents the computational result of the supersonic inviscid vortex flow.

The vortex problem is an excellent code validation case for a compressible inviscid flow

solver because an analytical solution is known for this case [60, 89]. The quality of the

numerical solution can be easily quantified by the relative error using the computed

solution and the closed-form solution.

The purposes of the test are twofold. Firstly, this test is intended to show the

accuracy of the Euler solver. The numerical algorithms for the viscous and turbulence

effects are not covered by the current test case. By validating a limited subset of the

code prior to more complex test cases, the modularization of the code development

can be achieved and one can assure that further additions for the viscous flows lie on

a solid foundation.

Secondly, the other purpose for using this case is to test the implementation

of the rotational frame of the reference. The supersonic vortex flow is computed

with a fixed frame of reference and with a rotational frame of reference. The correct

treatment of the rotational frame of reference plays an important role in computing

turbomachinery flows.

The computational domain of the circular channel is defined by two concentric

cylinders. An algebraic 3-D structured mesh is generated for the 90 degree section of

the circular domain, as shown in Fig. 31. In order to create the volume mesh, 2-D

meshes in the radial and circumferential plane are created first. The 2-D mesh from

the circumferential plane is then extruded into the direction of the rotational axis to

create a single layer volume mesh. The size of the mesh in terms of number of nodes

was 61× 31× 2 in the circumferential, radial and meridional direction, respectively.

The ratio of the radii of the outer wall to the inner wall is 1.5.

103

In

Out

Fig. 31. Structured mesh for supersonic vortex case.

There are two notable features of the flow worth mentioning. Firstly, the su-

personic vortex flow is shock-free and a higher-order solver is less likely to suffer

from the reduced spatial accuracy. The reduced accuracy is a general symptom of

the higher-order methods in the vicinities of shocks. When subjected to shocks, the

limiter function of a higher-order solver is triggered and this causes the solution ac-

curacy to be reduced to first order. Since the supersonic vortex flow does not form

any shocks, a properly implemented higher-order solver should not degrade its spatial

accuracy to first-order. For this reason, the numerical solutions are expected to be of

the advertised spatial accuracy of the flow solver.

Secondly, the boundary conditions are considerably simpler to implement for

the supersonic vortex case since the flow is supersonic both at the inlet and the

outlet. In the supersonic cases, the downstream flow state is fully determined by the

upstream condition at the adjacent location. Specifically, the far upstream condition

104

can be extrapolated to the interior side of the inlet boundary. The outlet boundary

conditions are determined by the solution at the interior side of the outlet boundary.

On the inner and outer walls, the slip boundary conditions are applied.

The exact solution of the supersonic compressible vortex [60, 89] depends on the

radial location, r =
√

x2 + y2, and the inlet Mach number at the inner wall location,

Mi. The subscript i in Mi denotes the inner arc. The radial and axial velocity

components of the exact solution are zero and only the circumferential velocity is

non-zero. The velocity fields in the Cartesian coordinates are defined as

u = U sin θ (4.1)

v = −U cos θ (4.2)

w = 0 (4.3)

U = Ui
ri
r

(4.4)

θ = tan−1(y/x). (4.5)

It is convenient to define a temperature ratio

T

Ti
(γ,Mi, ri, r) = 1 +

γ − 1

2
M2

i (1− ξ) (4.6)

where ξ is the ratio of the radial locations squared

ξ = (ri/r)
2. (4.7)

The static pressure and the density follow the isentropic relationship and they

are defined as

p

pi
=

(

T

Ti

)γ/(γ−1)

(4.8)

ρ

ρi
=

(

T

Ti

)1/(γ−1)

. (4.9)

105

where ρi and pi are the density and the pressure on the inner arc, respectively. Both

the pressure and density are higher in the outer radial location than the inner region

if γ > 1. The magnitude of the velocity is not dependent on the radial location.

The initial flow conditions are specified by adding a 10% pressure perturbation

to the exact solution at few selected interior nodes. The local pressure disturbances

increase the entropy locally. The concentrated entropy spikes travel downstream at

the local convective velocities, as the entropy modes of the Euler equations should

do. The steady solutions are obtained by continuing the iterations until all the dis-

turbances reach the outlet and move away from the computational domain through

the outlet boundary.

Figure 32 shows the pressure contour plot of the constant reconstruction case,

which yields first-order spatial accuracy. The computation is made with a fixed mesh.

The first-order solution suffers from excessive numerical diffusion as the uneven gaps

between the contour lines indicate the deviation from the exact solution. The exact

pressure is a function of radius. The gaps between adjacent contour lines, therefore,

should remain the same along the arc.

The difference between the computed solution and the exact solution is reduced

significantly when the linear reconstruction is employed. The pressure plot for the

higher-order case is shown in Fig. 33. The higher-order solution is obtained on a

rotational frame of reference. The mesh is assumed to rotate in the clock-wise direc-

tion. The rotational speed is set in such a way that the relative velocity on the inner

wall is 50 percent of the absolute velocity. The linear reconstruction case produces a

solution of superior quality compared to the constant reconstruction case.

The relative error of pressure for the constant reconstruction case is shown in

Fig. 34. The relative error is defined as the normalized difference between the com-

puted value and the exact solution. The difference is divided by the exact solution to

106

Fig. 32. Pressure contour of constant reconstruction case on a fixed frame of reference.

Ui = 2.25, ρi = 1, pi = 1/γ, ri = 1, and ro = 1.384.

normalize the error. The 1-norm of the relative error for the constant reconstruction

case is 8.72%. The 2-norm of pressure error is less than 5.12 × 10−3% for the linear

reconstruction case.

107

Fig. 33. Pressure contour of linear reconstruction case on a rotating frame of reference.

Ui = 2.25, ρi = 1, pi = 1/γ, ri = 1, and ro = 1.384.

Fig. 34. Pressure error of constant reconstruction case.

108

C. Transonic channel flow over a bump

This section presents the simulation of a transonic inviscid channel flow over a circular

bump. The flow is mostly subsonic except for the supersonic region next to the bump.

The purpose of the test is to evaluate whether the flow solver is capable of capturing

the shock correctly.

Figure 35 shows the schematic of the flow over a bump and the symbols to

designate the locations of interests. The flow runs from left to right in positive x-

direction. The domain stretches from x = −2 to x = 3 and a circular bump of a unit

width is placed at x = 0. The height of the bump is 0.042 and the channel height

is 2.037. The circular bump is uniquely defined by the three points at (−0.5, 0),

(0, 0.042), and (0.5, 0). Since the test flow is essentially two-dimensional, a 3-D mesh

with periodic condition in z direction is used for the current 3-D solver.

The flow is super-critical, i.e., inlet velocity is high enough that the subsonic flow

becomes supersonic as it climbs over the bump. The supersonic region is attached

to the bump and it does not extend to the upper wall of the channel such that the

supersonic region is limited to a closed pocket about the bump. As the flow leaves

the bump, it creates a shock on the downstream side of bump.

The subsonic inlet boundary conditions are determined by four upstream condi-

tions and one condition from the interior. Specifically, the boundary conditions are

determined by the total pressure, the total temperature, and two flow angles. The

remaining condition is determined using an upstream traveling Riemann invariant

from interior of the computational domain. The outlet boundary conditions are de-

termined by four interior states and a static pressure from the downstream side. The

flow is inviscid and thus the slip boundary condition is enforced on the solid walls.

The inlet Mach number is M∞ = 0.85 and the flow is in x direction. The static

109

(xmax, ymax)

Normal shockSonic line, M = 1

xsonic xshock

Upper wall

M > 1 M < 1

M < 1

x

y

Fig. 35. Schematic of transonic flow over a bump.

pressure at the outlet is determined from the stagnation pressure. No stagnation

pressure drop is assumed between the inlet and the outlet. Given the stagnation

pressure at inlet, p∗, and the inlet Mach number, M∞, the outlet static pressure, po,

is

po = p∗
(

1 +
γ − 1

2
M2
∞

)γ/(1−γ)

. (4.10)

The 3-D structured mesh has (71×31×2) nodes. The flow is considered periodic

in the z direction to reduce the computational effort. The mesh points are packed

close to the bump to capture the detailed flow features, as shown in Fig. 36.

The computed results are compared against various results by other researchers [90,

91, 92]. The results are summarized in Table IV. The locations and the Mach num-

bers associated with the sonic line about the supersonic pocket are also tabulated in

the table. In Table IV, xsonic and xshock denote the x coordinates where the sonic line

intersects the lower wall. xmax and ymax denote the peak of the sonic line.

Table IV also shows M1 and M2 which are the upstream and downstream Mach

110

Fig. 36. (71× 31× 2) mesh for transonic flow over a bump.

numbers, respectively, across the normal shock. M1 and M2 are extracted from the

numerical solution on the bump. The change of slope on the bump at the shock loca-

tion, xshock, is very small such that the isentropic normal shock relation is applicable.

The Mach number downstream from the normal shock, M2∗, can be calculated as a

function of the upstream Mach number, M1, [93], p. 67,

M2
2∗ =

2 + (γ − 1)M 2
1

2γM 2
1 − (γ − 1)

. (4.11)

The error tabulated in the last column of Table IV is defined as the relative error

between the computed Mach number M2 and the analytical value M2∗, error =

(M2 −M2∗)/M2∗.

As shown in Table IV, the current results compare well to the existing results

in the literature. Figure 37 shows an iso-Mach contour plot, where one can see that

the shock is captured clearly. Another clear feature observed in the figure is an iso-

Mach line extending toward outlet. This iso-Mach line divides the outlet region into

a high pressure upper region and a low pressure low region despite that a uniform

backpressure is specified.

The flow near the upper wall experiences a slight compression and expansion

due to the bump as displayed by the series of iso-Mach lines extended from the bump

111

Table IV. Comparison of transonic channel flow.
xsonic xshock xmax ymax M1 M2 M2∗ M2%Error

Current work -0.19 0.33 0.18 0.80 1.31 0.772 0.781 1.15%

Kermani & Plett -0.18 0.31 0.16 0.79 1.26 0.822 0.807 1.86 %

Veuillot & Viviand -0.19 0.33 0.20 0.82 n/a n/a n/a n/a

Deconinck & Hirsch -0.2 0.31 0.17 0.69 n/a n/a n/a n/a

Lerat & Sides -0.18 0.31 0.16 0.80 n/a n/a n/a n/a

Manna n/a n/a n/a n/a 1.31 0.77 0.781 1.41%

Fig. 37. Iso-Mach contour plot of transonic flow over a bump.

toward the upper walls. In contrast, the flow by the lower wall experiences the shock,

which increases the entropy. The difference of Mach numbers arises from the energy

loss, i.e., total pressure drop across the shock.

The results from the supersonic vortex case in the previous section and the

transonic channel flow test in the present section indicate that the solution algorithms

are implemented right. This completes the validation cases for the inviscid flow cases.

In the next section, the viscous flux computation will be tested.

112

D. Laminar boundary layer flow over a semi-infinite flat plate

This section presents the numerical test of a laminar flow over a semi-infinite flat

plate. Having shown the accuracy of the solver for the inviscid flux computation in

the previous two sections, this viscous flow test is intended to verify the accuracy of

the numerical viscous flux.

The numerical solution of the full Navier-Stokes equations is compared to the

Blasius boundary layer solution. The Blasius solution is based on an incompressible

flow assumption. The freestream speed of the simulation, therefore, should be fairly

low to minimize the compressibility effects. On the other hand, extremely slow flow

speed not only reduces the convergence rate of a compressible flow solver, but also the

accuracy of the solution. For these reasons, the freestream speed is set to U∞ = 0.20,

which lies within the incompressible flow regime, but it is not too low to affect the

performance of the compressible solver.

In simulating the boundary layer flow, two different approaches can be used.

First option is to consider the flow on the flat plate only. This requires one to impose

a correct solution at the inlet boundary. To do so, one can preselect the Reynolds

number Rex at the inlet. The velocity profile of the Blasius solution is then scaled

to the selected Rex at the inlet of the domain. If a solution algorithm is properly

implemented, the solution at downstream locations should be very similar to the

Blasius solution.

In the second option, the domain includes both the freestream region upstream

of the flat plate and the plate region. The constant freestream condition is imposed

far upstream. In this work, the second approach is employed since the setup can be

easily extended to the turbulent boundary layer test. The schematic of the setup is

shown in Fig. 38.

113

U∞

δ

Fig. 38. Schematic of setup of Blasius boundary layer.

Constant freestream conditions are initially applied on the entire domain. The

subsonic inflow and outflow boundary conditions are applied on the inlet and outlet

boundaries, respectively. The symmetry plane boundary condition is applied along

the lower boundary from the inlet up to the leading edge of the plate. The non-slip

boundary condition is applied on the plate. Constant static pressure is specified on

the upper boundary. The velocity component on the upper boundary in the direction

normal to the plate is extrapolated from the interior of the computational domain.

In other words, the upper boundary is treated as a subsonic outlet boundary. Zero

pressure gradient normal to the wall and adiabatic wall conditions are also imposed

on the plate.

The Blasius solution was computed for the comparison with the computed result

of the Navier-Stokes equations. The Blasius boundary layer equation does not have

a closed-form solution even though the Blasius boundary layer equation is simpler

than the Navier-Stokes equation. Excluding the region close to the leading edge, the

114

boundary layer profile is self-similar. Introducing the similarity variable η defined as

η = y

√

U∞
νx

(4.12)

where U∞ is the freestream flow speed, ν is the kinematic viscosity, and x is the

distance from the leading edge of the plate. Using the similarity variable, the Prandtl’s

boundary equation [94], pp. 232-234, without pressure gradient in the flow direction

is reduced to the Blasius boundary equation,

d3f

dη3
+

1

2
f
d2f

dη2
= 0, (4.13)

which is a third order ordinary differential equation of a nondimensional stream func-

tion f = ψ(x, y)/
√

Uνx), where ψ is the stream function. The boundary conditions

for the nondimensional stream function are [94], p. 233,

f |η=0 = 0,
df

dη
|η=0 = 0,

df

dη
|η→∞ → 1. (4.14)

Once the values of the stream function, f , are calculated, the velocities can be found

as

u = U
df

dη
(4.15)

v =
U

2Re
1/2
x

(η
df

dη
− f). (4.16)

Detailed solution procedures and tabulated solutions can be found in Schlichting [95]

and White [94].

The boundary layer thickness is defined as the height at which u-velocity becomes

99% of the freestream value. From the tabulated results, this corresponds to η ≈ 5.0.

Using the definition of the similarity variable η in Eq. (4.12), the boundary thickness

115

δ can be estimated from the Blasius solution as

δ = 5.0

√

νx

U
. (4.17)

The height of the mesh used to solve the Navier-Stokes equations is set to approxi-

mately 5 times of the estimated boundary thickness δ. A closeup view of the mesh

used for the test is shown in Fig. 39. The mesh is constructed using (41 × 41 × 2)

nodes. The length of the computational domain is set up in such a way that Reynolds

number based on the distance from the leading edge to the end of the plate, freestream

velocity and viscosity is approximately Rex = 1.5 · 105. The height of the domain

is set to 5 times that of the estimated boundary thickness in Eq. (4.17). The 60%

of the nodes in the normal direction to the wall are distributed from the wall at an

equal spacing in the estimated boundary layer thickness and the remaining 40% of

nodes are distributed in the remaining region at an increasing gap. A simple algebraic

stretching is also used to cluster nodes near the leading edge in the parallel direction

to the wall.

Both the first-order and higher-order solutions are computed. The velocity com-

ponents in the x-direction are sampled at a location which corresponds to Rex ≈

1.2 × 105. The first-order solution can be seen in Fig. 40. The difference between

the computed result and the Blasius solution is noticeable. The error is large in the

region where u approaches the freestream flow speed. The variation of u with respect

to η is close to linear from the wall up to η = 2 and the error due to the constant

reconstruction is not pronounced. The variation of u is no longer linear above η = 2

and the constant reconstruction fails to capture the velocity variation.

In contrast to the first-order solution, the second-order solution shown in Fig. 41

shows an excellent agreement between the computed Navier-Stokes solution and the

Blasius solution. A slight overshoot of velocity beyond η > 5 is observed. The skin

116

0.000

0.005

0.010

0.015

0.020

0.025

0.030

-0.020 -0.010 0.000 0.010 0.020 0.030 0.040

Fig. 39. Closeup view of mesh for Blasius boundary layer. The plate leading edge is

placed at x = 0.

friction coefficients of the first-order case and the second-order case are also compared.

From the Blasius solution, the skin friction coefficient is

Cf =
τw

1
2
ρU2

=
0.664√
Rex

. (4.18)

The comparison between the skin friction coefficients of the Navier-Stokes solu-

tion and the Blasius solution is given in Figure 42. The results of the constant and

linear reconstruction agree with the Blasius solution closely for most of the range of

Rex except at the leading edge region where the Blasius boundary layer equation hy-

pothesis does not hold and the predicted Cf approaches infinity. As mentioned above,

both the constant and linear reconstruction cases capture the slope of u variation next

to the wall very close to the Blasius solution.

117

0

1

2

3

4

5

6

7

8

0 0.2 0.4 0.6 0.8 1 1.2

u/U∞

η

Fig. 40. Constant reconstruction case. U velocity profile of Blasius boundary layer,

Rex = 120000. Line denotes the Blasius solution and symbols denote the

computed value.

118

0

1

2

3

4

5

6

7

8

0 0.2 0.4 0.6 0.8 1 1.2

u/U∞

η

Fig. 41. Linear reconstruction case. U velocity profile of Blasius boundary layer,

Rex = 120000. Line denotes the Blasius solution and symbols denote the

computed value.

119

0.000

0.005

0.010

0.015

0.020

0.025

0.030

 0 2 4 6 8 10 12 14

CR
LR
BS

Rex/10
4

Cf

Fig. 42. Comparison of skin friction coefficients. CR=Constant Reconstruction,

LR=Linear Reconstruction, and BS=Blasius Solution.

120

E. Turbulent boundary layer flow over a semi-infinite flat plate

This section presents the numerical test of a turbulent flow over a semi-infinite flat

plate. This turbulent flow test is used to verify the proper implementation of the k−ω

turbulence model [27, 75]. This test is well suited for code validation since turbulence

models are well tailored for this type of problem [96]. The computed results are

compared against experimental data from Wieghardt and Tillmann [97, 98].

The turbulent flow simulation is set up in a similar manner as in the previous

laminar boundary layer flow. The mesh used in the simulation is constructed using

(121 × 91 × 2) nodes as shown in Fig. 43. The distribution of nodes in the normal

direction to the wall is determined using an exponential function in an attempt to

obtain an even distribution of nodes in the log scale.

The length of the computational domain is set up in such a way that Reynolds

number based on the distance from the leading edge to the end of the plate, freestream

velocity and viscosity is approximately Rex = 2 · 107. The height of the domain is

set to 10 times that of the estimated boundary thickness. The estimation is based on

the Prandtl’s one-seventh power-law profile [94] which is

δ ≈ 0.16x

Re
1/7
x

(4.19)

where Rex = 2 · 107 is used.

Mesh points are clustered close to the wall such that the y+ number is approxi-

mately 1. The y+ number is defined as

y+ =
u∗∆y1
ν

(4.20)

where ∆y1 is the grid spacing between the wall to the first interior node in the direction

121

normal to the wall. The frictional velocity u∗ is defined as

u∗ =

√

τw
ρ

(4.21)

where τw is the wall shear stress, i.e., τw = µ∂u/∂y|y=0.

In the k − ω model, non-zero wall boundary condition for ω and the freestream

conditions of both k and ω must be specified. The freestream conditions can be

defined in terms of turbulence intensity [95],

Tu =

√

1
3
(u′2 + v′2 + w′2)

U∞
=

√

2
3
k

U∞
(4.22)

and the eddy viscosity in the k − ω model is defined as [27]

νt =
k

ω
. (4.23)

The freestream velocity, the turbulence intensity and the freestream eddy viscosity

are initially specified as U∞ = 0.5, Tu = 0.001 and νt = 0.001ν. The freestream

value of k is then computed by Eq. (4.22) with a known freestream velocity U∞ and a

specified turbulence intensity in the upstream region. Using Eq. (4.23), the freestream

value of ω can be readily computed.

The freestream conditions are specified on the upper boundary. The outlet

boundary conditions are extrapolated from the interior. On the wall boundary, the

velocity fluctuations are zero and the turbulent kinetic energy k is zero on the wall.

The boundary condition for ω is determined by the rough-surface boundary approx-

imation.

Numerical tests by Hellsten [31, 99] and Thivet et al. [40] note the sensitivity

of Cf to grid spacing. The skin friction coefficient, Cf , deviates slightly from the

experimental data as the grid spacing near the wall varies. Thivet et al. [40] reports

122

Fig. 43. Mesh for turbulent flow over a semi-infinite plate.

that the difference of computed Cf values using the smooth wall limit and the rough

wall boundary condition becomes less than 1% if y+1 ≈ 0.5k+s . The last condition can

be satisfied by controlling the grid spacing ∆y1 and the sand grain height ks. The

value of ks, however, should be small enough that k+s is less than 5 if a rough-surface

boundary condition is used for a smooth surface.

The tangential velocity of the k − ω modeled solutions is shown in Fig. 44.

The solid line represents the computed velocity and the plus symbols denote the

experimental data reported by Wieghardt and Tillmann [97]. The dashed line shows

the linear relationship between u+ and y+. The experimental data was digitized by

Yoder [100] and the digitized data is used in Fig. 44.

Figure 44 shows that the computed velocity profile in the linear sublayer, y+ < 5,

matches the experimental linear velocity profile well. The log-law region solution also

compares fairly well to experimental data. The outer layer data are also in excellent

agreement with the experimental data. A small mismatch of the peak u+ is due

to the difference in the sampling location. The experimental data are sampled at

Rex = 1.0643× 106 whereas the current results are sampled at Rex = 1.0498× 106.

Figure 45 shows the distribution of skin friction coefficients with the k−ω model.

The experimental results are obtained from the Yoder’s digitized data [100, 97]. The

agreement between the computed and experimental data is favorable except in the

low Rex region.

This section presented the turbulent boundary layer flow. The results using the

123

0

5

10

15

20

25

1 10 100 1000 10000

u+

y+

k-omega
Wieghardt & Tillmann

u+=y+

Fig. 44. Tangential velocity profile for the k − ω model. The computed velocities are

sampled at Rex = 1.0498×106. The experiment data by Wieghardt & Tillman

result is sampled at Rex = 1.0643× 106.

0

0.002

0.004

0.006

0.008

0.001

0 2 4 6 8 10 12

k-omega

Wieghardt & Tillman

Rex/10
6

Cf

Fig. 45. Comparison of the computed skin friction coefficients, Cf , and the experiment

data by Wieghardt and Tillmann. The computed result is based on the k−ω
model.

124

k − ω model matched the experimental results closely, insuring that the model was

implemented correctly.

This concludes the code validation steps. The last four numerical tests, ranging

from a supersonic vortex flow to a turbulent boundary layer flow, demonstrated that

the solution algorithms were well implemented.

F. Honeywell high speed centrifugal compressor

This section presents the results of the parametric study of the axial thrust load of a

centrifugal compressor. The compressor of a Honeywell turbocharger was used herein

for the analysis. The values of the axial thrust were obtained through the numerical

simulation of the flow in the impeller and the leakage flow through the gap between

the back (unbladed) side of the wheel and the back plate. Because of the periodicity,

the flow was calculated in only one passage of the impeller and the corresponding

back side of the wheel. The numerical simulation provided the flow fields on both

sides of the impeller. The integration of the pressure fields on the two sides of the

wheel yielded the axial thrust load on the wheel.

The impeller inlet diameter, d1,s, is 70 mm and the exit diameter, d2, is 94.0

mm. The hub-to-tip ratio, d1,h/d2, is 0.245 and the impeller exit width ratio, b2/d2,

is 0.069. The impeller tip clearance is constant along the blade and equal to 0.75 mm.

The impeller has 6 full blades and 6 splitter blades. The compressor has a vaneless

diffuser.

Two modifications were made with respect to the impeller geometry. First,

to simplify the grid generation, the compressor was modeled having 12 full blades.

Second, the impeller tip clearance was modeled to be 0.25 mm. The impeller is shown

in Fig. 46. The entire computational domain is shown in Fig. 47 and a meridional

125

section through the grid on the back side of the impeller is shown in Fig. 48.

Fig. 46. Detail of the Honeywell centrifugal compressor impeller geometry.

The inlet flow in the compressor was axial. The inlet temperature was 302.4 deg

Kelvin and the inlet stagnation pressure was 96,173 Pa. In this numerical investi-

gation, the angular velocity of wheel was varied between 68,478 and 96,815 RPM .

The pressure ratio, pinlet/p
∗
exit, was varied between 1.456 and 2.340. For these flow

conditions, the flow in the compressor was transonic. The maximum Mach number

varied with the wheel speed, as shown in Table V. The supersonic flow region was

located near the trailing edge of the blade, in the tip clearance region.

An important parameter that determines the leakage mass flow rate was the

pressure downstream of the leakage region. The value of this pressure was specified

at the location shown in Fig. 49. Once the leakage pressure value was specified, the

leakage mass flow resulted from the numerical simulation.

126

Fig. 47. Computational grid. Fig. 48. Meridional section through the

grid on the back side of the im-

peller.

Table V. Maximum Mach number variation as a function of wheel speed.

Angular velocity [RPM] 68478 83902 96815

Maximum Mach number 1.08 1.32 1.56

In certain circumstances, it may be beneficial to specify the mass flow rate as an

input in the code and obtain the leakage pressure as a result of numerical simulation.

It is not possible, however, to impose directly the mass flow rate as a boundary

condition in a numerical algorithm that solves the Navier-Stokes equations. This

limitation is due to the constraints imposed by the Riemann boundary conditions.

An iterative process can be devised, however, such that the value of the leakage

pressure is adjusted until the desired leakage mass flow rate value is obtained.

In order to verify the accuracy of the numerical results, one has to prove that the

solution is independent of the grid size. Four meshes have been used to assess that

127

XY

Z

Leakage
Pressure

X

Y

Z

U

Fig. 49. Leakage pressure location.

the results are grid independent. The coarsest grid has approximately 183,000 nodes

in the impeller mesh and 3,100 × 30 nodes in the leakage flow mesh. The number

of meridional planes has been kept constant and equal to 30 for all four grids. The

y+ number for the coarsest grid is less than 3.5. The number of nodes of the finer

meshes is shown in Table VI.

The outcome of the grid independence (or convergence) test is shown in Fig. 50[101].

The variation of both the axial thrust and the mass flow rate decreases significantly

once the number of grid points is larger than 500,000. One can then conclude that

the results are grid independent if the grid exceeds 500,000 points.

The parametric study of the axial thrust load requires a large computational

effort since the flow needs to be simulated for numerous operating points. The number

of iterations necessary to obtain a converged solution varies depending on the position

of the operating point on the compressor map. A larger number of iterations is

required for higher wheel speeds. In average, it takes approximately 15,000 iterations

to obtain a converged solution with an (energy variable) error less than 10−5. In order

128

2e+05 3e+05 4e+05 5e+05 6e+05 7e+05
Grid Points

0.94

0.96

0.98

1.00

N
on

−
di

m
en

si
on

al
 A

xi
al

 T
hr

us
t a

nd
 M

as
s

F
lo

w
 R

at
e

Axial Thrust
Mass Flow Rate

Fig. 50. Grid convergence test.

to reduce the computational effort, a computational grid with 198,280 grid points has

been used. In addition to having a smaller number of grid points, the coarse grid

used herein also converged faster because of its additional damping. The reduction of

the computational effort, however, is penalized by an increase of the computational

error. As shown in Fig. 50, there is a 5% difference between the axial thrust load

predicted by a 198,280 grid points solution and the grid independent solution [101].

Figure 51 shows the computed operating points on compressor map. The lines

with symbols denote the experimental data. The computed results are shown as the

open triangles.

The variation of the axial thrust load was calculated for three angular velocities

and two leakage pressure values. For each angular velocity, three operating points have

been predicted. Consequently, the axial thrust has been calculated for 18 operating

points.

The variation of the axial thrust load and leakage mass flow rate are shown in

Table VII. Note that the axial thrust load is positive if it is pointing in the forward

129

Table VI. Size of computational grids.

Grid Nodes y+

Impeller Grid Leakage Grid Total

1 183,471 3100 × 30 276,471 3.5

2 265,471 3890 × 30 382,171 3.5

3 396,483 4450 × 30 529,983 2.5

4 501,583 5950 × 30 680,083 2.5

direction. The variation of the axial thrust load as a function of the operating point

and leakage pressure is shown in Fig. 52 [102]. For a given leakage pressure, the axial

thrust load increases with the compressor pressure ratio. Consequently, all the factors

that contribute to the increase of the compressor pressure ratio, will also contribute

to the increase of the axial thrust. As a result, the axial thrust load increases with

the wheel speed. For a constant wheel speed, the axial thrust load varies with the

mass flow rate. The variation of the mass flow rate is governed by the exit static

pressure.

The variation of the leakage flow as a function of the operating point is shown

in Fig. 53 [102]. The leakage mass flow rate is more sensitive than the axial thrust

load to the variation of the leakage mass flow rate.

130

1

1.5

2

2.5

3

3.5

4

4.5

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

pr
es

su
re

 r
at

io

mass flow (kg/sec)

Fig. 51. Compressor map. Lines with symbols denote experimental data. Open trian-

gles denote the computed results.

Table VII. Parameter variation.

pinlet/p
∗
exit Angular Leakage Π∗c Efficiency Mass flow Leakage mass Axial

velocity pressure rate flow rate thrust
[RPM] [bar] [kg/s] [g/s] [N]

1.456 68,478 1.0 1.774 0.805 0.3500 1.201 100.0
1.560 68,478 1.0 1.867 0.818 0.2915 1.434 113.6
1.622 68,478 1.0 1.933 0.815 0.2429 1.549 122.2

1.612 83,902 1.0 2.163 0.799 0.4715 0.953 133.3
1.820 83,902 1.0 2.367 0.796 0.4154 1.726 165.8
1.976 83,902 1.0 2.515 0.770 0.3322 2.044 186.3

1.768 96,815 1.0 2.599 0.768 0.5362 1.245 178.3
2.132 96,815 1.0 2.949 0.782 0.4906 2.033 222.4
2.340 96,815 1.0 3.224 0.724 0.3366 2.859 303.0

1.456 68,478 1.1 1.777 0.805 0.3505 0.827 117.3
1.560 68,478 1.1 1.864 0.815 0.2906 0.871 129.1
1.622 68,478 1.1 1.932 0.817 0.2470 1.236 138.3

1.612 83,902 1.1 2.162 0.795 0.4749 0.928 152.5
1.820 83,902 1.1 2.365 0.798 0.4118 1.614 180.5
1.976 83,902 1.1 2.515 0.769 0.3309 1.598 204.9

2.132 96,815 1.1 2.951 0.767 0.4903 1.651 244.2
2.340 96,815 1.1 3.142 0.715 0.3664 2.101 279.7

131

0.2
0.25

0.3
0.35

0.4
0.45

0.5
0.55 1.5

2

2.5

3

3.50

50

100

150

200

250

300

350

Pressure ratio

Axial force: leakage back−pressure=1.0 & 1.1atm [open & filled]

mass flow [kg/s]

A
xi

al
 fo

rc
e

[N
]

Fig. 52. Variation of axial thrust load with operating point.

0.2
0.25

0.3
0.35

0.4
0.45

0.5
0.55 1.5

2

2.5

3

3.50

0.5

1

1.5

2

2.5

3

Pressure ratio

Leak mass flow: Leak back−pressure Open=1.0 & Filled=1.1

Mass flow [Kg/s]

Le
ak

 m
as

s
flo

w
 [g

/s
]

68478 83902

 96815

Fig. 53. Variation of leakage mass flow rate with operating point.

132

CHAPTER V

CONCLUSION AND FUTURE WORK

The hybrid mesh generation algorithm for turbomachinery airfoils took advantage of

the flexibility of the 2-D unstructured mesh and the efficiency of a structured mesh.

The grid generation method is robust and can efficiently handle challenging airfoils.

The method is based on 2-D algorithms, which include a mapping technique and an

optimization-based smoothing method. Further enhancement of grid quality was pos-

sible by edge swapping and node insertion. Edge swapping reduced the dependency

of mesh quality on the choice of the source mesh. Mesh smoothing was extended

to include nodes on the periodic boundaries by using the ghost-cell approach. This

approach relaxes the restrictions imposed on the nodes of the periodic boundaries,

and as a consequence, mesh quality was improved.

Lawson’s method was extended in two ways. First, the maximization of the

minimum angle was replaced by a more general quality measure. The purpose of

this modification was to provide a unified quality measure for smoothing and edge

swapping. Second, Lawson’s method was extended from a 2-D to a 3-D algorithm

by applying it to a “quad-tube”. The decision to swap the edges of the tube was

based on whether swapping improved the minimum quality measure of the quad-cells

in the quad-tube. The methodology developed herein provides an integrated system

for mapping, smoothing, edge swapping and node insertion.

The flow solver was developed using the finite volume method for a mixed el-

ements unstructured mesh. The numerical flux was computed using the upwind

method with the Roe Riemann solver for the convective flux and the averaged nodal

gradient with directional derivative for the viscous flux. The Green-Gauss method

and the least-squares method were employed to compute the gradients of the flow

133

state variables. The higher-order spatial accuracy was obtained by piece-wise linear

reconstruction. The k − ω turbulence model was implemented to account for tur-

bulence effects. The edge-based data structures were used extensively to make the

implemented solution algorithm well suited for a general mesh.

The supersonic vortex case was tested to demonstrate the accuracy of the higher-

order scheme on the rotational frame of reference. The computed solution approxi-

mated well the analytical solution. The shock capturing capability was tested in the

channel flow case. The accuracy of the flow solver was verified by the comparison of

the results against published data. The solutions of the flow solver were validated by

the boundary layer solutions in both a laminar and a turbulent flow case. A numer-

ical test for a high speed Honeywell centrifugal compressor was conducted. A grid

independent solution was achieved after a series of computations on grids of various

spatial resolutions. Finally, the variation of the axial load was predicted for several

compressor operating points.

A serial version of the flow solver was modified to run on multi-processor com-

puters. The parallelization was implemented by using the single program multiple

data (SPMD) approach where each processor was assigned a portion of the global

mesh. The data exchange between the interfaces of the partitioned meshes was ac-

complished with MPI. The user friendliness of the flow solver was enhanced by the

addition of a graphical user interface.

Possible future work directions are presented in the following paragraphs. There

are much room for improvement to be made on the present work. The edge swap-

ping method in the present hybrid mesh generation algorithm was limited to the

interior edges only. The edge swapping, however, can also be applied to the peri-

odic boundaries using a ghost-cell approach. The generalized edge swapping should

further enhance the quality of a mesh and is suggested as a future study.

134

The implemented flow solution algorithm will benefit from the convergence ac-

celeration schemes such as, preconditioning, and multi-grid.

The application of the parallel version of the solver is limited to a simple geometry

due to the difficulty in domain decomposition. A general mesh partitioning tool such

as “Metis” [103] is suggested for the future work.

135

REFERENCES

[1] Löhner, R., Applied CFD Techniques , Wiley, New York, 2001.

[2] Mavriplis, D. J., “On Convergence Acceleration Techniques for Unstructured

Meshes,” Tech. Rep. 98-45, ICASE, Hampton, VA, Oct. 1998.

[3] Khawaja, A. and Kallinderis, Y., “Hybrid Grid Generation for Turbomachinery

and Aerospace Applications,” International Journal for Numerical Methods in

Engineering , Vol. 49, 2000, pp. 145–166.

[4] Pirzadeh, S., “Three-dimensional Unstructured Viscous Grids by the

Advancing-Layers Method,” AIAA Journal , Vol. 24, No. 1, 1996, pp. 43–49.

[5] Owen, S., “A Survey of Unstructured Mesh Generation Technology,” 7th Inter-

national Meshing Roundtable, 1998, pp. 239–267.

[6] Mingwu, L., Benzley, S., Sjaardema, G., and Tautges, T., “A Multiple Source

and Target Sweeping Method for Generating All Hexahedral Finite Element

Meshes,” Proceedings of the 5th International Meshing Roundtable, October

1996, pp. 217–225.

[7] Staten, M., Canann, S., and Owen, S., “BMSWEEP: Locating Interior Nodes

During Sweeping,” Engineering with Computers , Vol. 15, No. 3, 1999, pp. 212–

218.

[8] Marcum, D. L. and Whatherill, N. P., “Unstructured Grid Generation Using

Iterative Point Insertion and Local Reconnection,” AIAA Journal , Vol. 33,

1995, pp. 1619–1625.

136

[9] Batina, J., “Unsteady Euler Airfoil Solution Using Unstructured Dynamic

Meshes,” AIAA Journal , Vol. 28, No. 8, 1990, pp. 1381–1388.

[10] Bern, M. W. and Eppstein, D., “Mesh Generation and Optimal Triangulation,”

Tech. Rep. CSL-92-1, Xerox Palo Alto Research Center, Palo Alto, CA, 1992.

[11] Zhou, T. and Shimada, K., “An Angle-Based Approach to Two-Dimensional

Mesh Smoothing,” 9th International Meshing Roundtable, Sandia National Lab-

oratories, New Orleans, Louisiana, October 2000, pp. 373–384.

[12] Canann, S., Tristano, J., and Staten, M., “An Approach to Combined Laplacian

and Optimization-Based Smoothing for Triangular, Quadrilateral, and Quad-

Dominant Meshes,” 7th International Meshing Roundtable, Sandia National

Laboratories, Dearborn, MI, 1998, pp. 479–494.

[13] Freitag, L. and Plassmann, P., “Local Optimization-based Simplicial Mesh Un-

tangling and Improvement,” International Journal of Numerical Methods in

Engineering , Vol. 49, No. 1-2, July 2000, pp. 109–125.

[14] Amenta, A. B., Bern, M. W., and Eppstein, D., “Optimal Point Placement for

Mesh Smoothing,” J. Algorithms , Vol. 30, No. 2, Feb 1999, pp. 302–322, Special

issue for 8th SODA.

[15] Feffermann, C. L., “Existence & Smoothness of the Navier-Stokes Equation,”

http://www.claymath.org/Millennium Prize Problems/, November 2003.

[16] Mavriplis, D., “Three-dimensional multigrid for the Euler equations,” AIAA

Journal , Vol. 30, 1992, pp. 1753–1761.

[17] Potsdam, M., Intemann, G., Frink, N. T., Campbell, R., Smith, L., and

Pirzadeh, S., “Wing Pylon Fillet Design Using Unstructured Mesh Euler

137

Solvers,” AIAA Applied Aerodynamics Conference, AIAA Paper 93-3500, Mon-

terey, CA, August 1993.

[18] Venkatakrishnan, V., “A Perspective On Unstructured Grid Flow Solvers,”

Tech. Rep. 95-3, ICASE, Hampton, VA, 1995.

[19] Roe, P., “Approximate Riemann Solvers, Parameter Vectors, and Difference

Schemes,” Journal of Computational Physics , Vol. 43, 1981, pp. 357–372.

[20] Roe, P., “Characteristic Based Schemes for the Euler Equations,” Annual Re-

view of Fluid Mechanics , Vol. 18, 1986, pp. 337–365.

[21] Weiss, J. M., Maruszewski, J. P., and Smith, W. A., “Implicit Solution of Pre-

conditioned Navier-Stokes Equations Using Algebraic Multigrid,” AIAA Jour-

nal , Vol. 37, 1999, pp. 29–36.

[22] Haselbacher, A. and Blazek, J., “Accurate and Efficient Discretization of

Navier-Stokes Equations on Mixed Grids,” AIAA Journal , Vol. 38, No. 11,

2000, pp. 2094–2102.

[23] Blazek, J., Computational Fluid Dynamics: Principles and Applications , Else-

vier, New York, 2001.

[24] Barth, T., “Aspects of Unstructured Grids and Finite-Volume Solvers for the

Euler and Navier-Stokes Equations,” von Karman Institute (VKI) Lecture Se-

ries 1994-05, 1994.

[25] Barth, T. J. and Jespersen, D. C., “The Design and Application of Upwind

Schemes on Unstructured Meshes,” 27th AIAA Aerospace Sciences Meeting &

Exhibit, AIAA Paper 89-0366, Reno, NV, January 1989.

138

[26] Venkatakrishnan, V., “Convergence to Steady State Solutions of the Euler

Equations on Unstructured Grids with Limiters,” 31st AIAA Aerospace Sci-

ences Meeting & Exhibit, AIAA Paper 93-0880, Reno, NV, January 1993.

[27] Wilcox, D. C., Turbulence Modeling for CFD , DCW Industries, Inc., La

Cãnada, 1993.

[28] Hirsch, C., Numerical Computation of Internal and External Flows , Vol. 2,

Wiley, New York, 1988.

[29] Pope, S., Turbulent Flows , Cambridge University Press, Cambridge, 2000.

[30] Wilcox, D. C., “Simulation of Transition with a Two-Equation Turbulence

Model,” AIAA Journal , Vol. 32, 1994, pp. 247–255.

[31] Hellsten, A., “Some Improvements in Menter’s k-ω SST Turbulence Model,”

29th AIAA Fluid Dynamics Conference, AIAA Paper 1998-2554, Albuquerque,

NM, June 1998.

[32] Kim, N. and Rhode, D. L., “Swirling Streamline-Curvature Law of the Wall

from a Novel Perturbation Analysis,” Numerical Heat Transfer, Part B , Vol. 36,

1999, pp. 331–350.

[33] Wilcox, D. C. and Chambers, T. L., “Streamline Curvature Effects on Turbu-

lent Boundary Layers,” 9th AIAA Fluid and Plasma Dynamics Conference &

Exhibit, AIAA Paper 76-351, San Diego, CA, July 1976.

[34] B. E. Launder, C. H. Priddin, B. I. S., “The Calculation of Turbulent Bound-

ary Layers on Spinning and Curved Surfaces,” Journal of Fluids Engineering ,

Vol. 99, 1977, pp. 231–239.

139

[35] Bradshaw, P., “Compressible Turbulent Shear Layers,” Annual Review of Fluid

Mechanics , Vol. 9, 1977, pp. 33–54.

[36] Tweedt, D. L., Chima, R. V., and Turkel, E., “Preconditioning for Numerical

Simulation of Low Mach Number Three-Dimensional Viscous Turbomachinery

Flow,” 28th AIAA Fluid Dynamics Conference and 4th AIAA Sear Flow Control

Conference, AIAA Paper 97-1828, Snowmass, CO, June 1997.

[37] Chima, R. V., “A K-omega turbulence model for quasi-three-dimensional tur-

bomachinery,” 34th AIAA Aerospace Sciences Meeting & Exhibit, AIAA Paper

96-0248, Reno, NV, January 1996.

[38] Yao, J., Jameson, A., Alonso, J. J., and Liu, F., “Development and Validation

of a Massively Parallel Flow Solver for Turbomachinery Flows,” 38th AIAA

Aerospace Sciences Meeting & Exhibit, AIAA Paper 00-0882, Reno, NV, Jan-

uary 2000.

[39] Menter, F. R., “Two-Equation Eddy-Viscosity Turbulence Models for Engineer-

ing Applications,” AIAA Journal , Vol. 32, No. 8, August 1994, pp. 1598–1605.

[40] Thivet, F., Daouk, M., and Knight, D. D., “Influence of the Wall Condition

on k − ω Turbulence Model Prediction,” AIAA Journal , Vol. 40, No. 1, 2002,

pp. 179–181.

[41] Menter, F. R., “Influence of Freestream Values on k-ω Turbulence Model Pre-

diction,” AIAA Journal , Vol. 30, No. 6, August 1992, pp. 1657–1659.

[42] Tennekes, H. and Lumley, J. L., A First Course in Turbulence, The MIT Press,

Cambridge, MA, 1972.

140

[43] Kim, K. and Cizmas, P. G., “Three-Dimensional Hybrid Mesh Generation for

Turbomachinery Airfoils,” Journal of Propulsion and Power , Vol. 18, No. 3,

May 2002, pp. 536 – 543.

[44] Shewchuk, J. R., “Triangle: Engineering a 2D Quality Mesh Generator and

Delaunay Triangulator,” Applied Computational Geometry: Towards Geometric

Engineering , edited by M. C. Lin and D. Manocha, Vol. 1148 of Lecture Notes

in Computer Science, Springer-Verlag, May 1996, pp. 203–222.

[45] Preparata, F. P. and Shamos, M. I., Computational Geometry , Texts and Mono-

graphs in Computer Science, Springer-Verlag, 1985.

[46] Lawson, C. L., “Software for C1 Surface Interpolation,” Tech. Rep. NASA-CR-

155047, Jet Propulsion Lab., California Institute of Technology, Pasadena, CA,

1977.

[47] Holmes, D. G. and Snyder, D. D., “The Generation of Unstructured Triangular

Meshes Using Delaunay Triangulation,” Numerical Grid Generation in Compu-

tational Fluid Mechanics , Pineridge Press, Swansea, U.K., 1988, pp. 643–652.

[48] Godunov, S. K., “A Difference Scheme for Numerical Computation Discon-

tinuous Solution of Hydrodynamic Equations,” Math. Sbornik , Vol. 47, 1959,

pp. 271–306, translated US Joint Publications Research Service, JPRS 7226,

1969.

[49] Kim, K., An Adaptive Mesh Method for the Simulation of Blade Vortex Inter-

action, Master’s thesis, Texas A&M University, Aug. 1998.

[50] van Leer, B., Tai, C. H., and Powell, K. G., “Design of Optimally Smoothing

Multi-Stage Schemes for the Euler Equations,” Communications in Applied

141

Numerical Mathematics , Vol. 8, 1992, pp. 761–769.

[51] Jameson, A., Schmidt, W., and Turkel, E., “Numerical Solutions of the Eu-

ler Equations by Finite Volume Methods Using Runge-Kutta Time-Stepping

Schemes,” 14th AIAA Fluid and Plasma Dynamic Conference, AIAA Paper

81-1259, Palo Alto, CA, June 1981.

[52] Courant, R., Friedrichs, K. O., and Lewy, H., “On the Partial Difference

Equations of Mathematical Physics,” Mathematische Annalen, Vol. 100, 1928,

pp. 32–74, translated IBM Journal, Vol. 11, 1967, pp. 215-234.

[53] Jameson, A. and Baker, T. J., “Calculation of Inviscid Transonic Flow over a

Complete Aircraft,” 24th AIAA Aerospace Sciences Meeting & Exhibit, AIAA

Paper 86-0103, Reno, NV, January 1986.

[54] Blazek, J., Irmisch, S., and Haselbacher, A., “Unstructured Mixed-Grid Navier-

Stokes Solver for Turbomachinery Applications,” 37th AIAA Aerospace Sci-

ences Meeting & Exhibit, AIAA Paper 99-0664, Reno, NV, January 1999.

[55] Vijayan, P. and Kallinderis, Y., “A 3D Finite-Volume Scheme for the Euler

Equations on Adaptive Tetrahedral Grids,” Journal of Computational Physics ,

Vol. 113, 1994, pp. 249–267.

[56] Toro, E. F., Riemann Solvers and Numerical Methods for Fluid Dynamics ,

Springer-Verlag, Berlin, 2nd ed., 1999.

[57] Hirsch, C., Numerical Computation of Internal and External Flows , Wiley, New

York, 1988.

[58] Chen, J. P., Ghosh, A. R., Sreenivas, K., and Whitfield, D. L., “Comparison

of Computations Using Navier-Stokes Equations in Rotating and Fixed Coor-

142

dinates for Flow Through Turbomachinery,” 35th AIAA Aerospace Sciences

Meeting & Exhibit, AIAA Paper 97-0878, Reno, NV, January 1997.

[59] Lomax, H., Pulliam, T. H., and Zingg, D. W., Fundamentals of Computational

Fluid Dynamics , Vol. I, Springer Verlag, Berlin, 2001.

[60] Aftosmis, M., Gaitonde, D., and Tavares, T. S., “Behavior of Linear Recon-

struction Techniques on Unstructured Meshes,” AIAA Journal , Vol. 33, No. 11,

1995, pp. 2038–2049.

[61] Essers, J. A., Delanaye, M., and Rogiest, P., “An Upwind-Biased Finite-

Volume Technique for Solving Compressible Navier-Stokes Equations on Irregu-

lar Meshes. Applications to Supersonic Blunt-Body Flows and Shock-Boundary

Layer Interactions,” 11th AIAA Computational Fluid Dynamics Conference,

AIAA Paper 93-3377, Orlando, FL, July 1993.

[62] Guillard, H. and Farhat, C., “On the Significance of the Geometric Conservation

Law for Flow Computations on Moving Meshes,” Computer Methods in Applied

Mechanics and Engineering , Vol. 190, 2000, pp. 1467–1482.

[63] Xu, K., “Does Perfect Riemann Solver Exist?” 14th AIAA Computational

Fluid Dynamics Conference, AIAA Paper 99-3344, Norfolk, VA, June 1999.

[64] Gressier, J. and Moschetta, J.-M., “On the Pathological Behavior of Upwind

Schemes,” 36th AIAA Aerospace Sciences Meeting & Exhibit, AIAA Paper

98-0110, Reno, NV, January 1998.

[65] Kim, S., Kim, C., Rho, O., and Hong, S., “Cure for Shock Instability: Devel-

opment of an Improved Roe Scheme,” 40th AIAA Aerospace Sciences Meeting

& Exhibit, AIAA Paper 2002-0548, Reno, NV, January 2002.

143

[66] Harten, A., “Self Adjusting Grid Methods for One Dimensional Hyperbolic

Conservation Laws,” Journal of Computational Physics , Vol. 50, 1983, pp. 235–

269.

[67] Campbell, J. C., Hyman, J. M., and Shashkov, M. J., “Mimetic Finite Difference

Operators for Second-Order Tensors on Unstructured Grids,” Computers and

Mathematics with Application, Vol. 44, 2002, pp. 157–173.

[68] Press, W. H., Teukolsky, S. A., Vetterling, W. T., and Flannery, B. P., Nu-

merical Recipes in FORTRAN : the Art of Scientific Computing , Cambridge

University Press, Cambridge, England, 1992.

[69] Golub, G. H. and van Loan, C. F., Matrix Computations , Johns Hopkins Uni-

versity Press, Baltimore, MD, 1993.

[70] van Leer, B., “Towards the Ultimate Conservative Difference Scheme. V. A Sec-

ond Order Sequel to Godunov’s Method,” Journal of Computational Physics ,

Vol. 32, 1979, pp. 101–136.

[71] Venkatakrishnan, V., “Convergence to Steady-State Solutions of the Euler

Equations on Unstructured Grids with Limiters,” Journal of Computational

Physics , Vol. 118, 1995, pp. 120–130.

[72] Barth, T. J., “Numerical Aspects of Computing Viscous High Reynolds Number

Flows on Unstructured Meshes,” 29th AIAA Aerospace Sciences Meeting &

Exhibit, AIAA Paper 91-0721, Reno, NV, January 1991.

[73] Luo, H., Baum, J. D., Löhner, R., and Cabello, J., “Adaptive Edge-based Finite

Elements Schemes for the Euler and Navier-Stokes Equations on Unstructured

144

Grids,” 31st AIAA Aerospace Sciences Meeting & Exhibit, AIAA Paper 93-

0336, Reno, NV, January 1993.

[74] Whitaker, D. L., “Three-Dimensional Unstructured Grid Euler Computations

Using a Fully-Implicit, Upwind Method,” 11th AIAA Computational Fluid Dy-

namics Conference, AIAA Paper 93-3337, Orlando, FL, July 1993.

[75] Menter, F. R., “Zonal Two Equation k−ω Turbulence Models for Aerodynamic

Flows,” 24th AIAA Fluid Dynamics Conference, AIAA Paper 93-2906, Orlando,

FL, July 1993.

[76] Yodder, D. A., Georgiadids, N. J., and Orkwis, P. D., “Implementation of a

Two-Equation k-omega Turbulence Model in NPARC,” 34th AIAA Aerospace

Sciences Meeting & Exhibit, AIAA Paper 96-0383, Reno, NV, January 1996.

[77] Liu, F. and Zheng, X., “A Strongly Coupled Time-Marching Method for Solving

the Navier-Stokes and k − ω Turbulence Model Equations with Multigrid,”

Journal of Computational Physics , Vol. 128, No. 0211, August 1996, pp. 289–

300.

[78] Zheng, X. and Liu, F., “Staggered Upwind Method for Solving Navier-Stokes

and k − ω Turbulence Model Equations,” AIAA Journal , Vol. 33, No. 6, June

1995, pp. 991–998.

[79] Martinelli, L. and Jameson, A., “Viscous Flow Solvers for Aero/Hydrodynamic

Analysis and Design,” 29th AIAA Fluid Dynamics Conference, AIAA Paper

98-3003, Albuquerque, NM, June 1998.

[80] Minyard, T. and Kallinderis, Y., “Applications of Grid Partitioning and Parallel

Dynamics Load Balancing,” 35th AIAA Aerospace Sciences Meeting & Exhibit,

145

AIAA Paper 97-0879, Reno, NV, January 1997.

[81] Snir, M., Otto, S., Huss-Lederman, S., Walker, D., and Dongarra, J., MPI: The

Complete Reference, The MIT Press, Cambridge, MA, 1996.

[82] Pacheco, P. S., Parallel Programming with MPI , Morgan Kaufmann, San Fran-

cisco, CA, 1997.

[83] Welch, B. B., Practical Programming in Tcl and Tk , Prentice Hall, Upper

Saddle River, NJ, 1995.

[84] Harrison, M. and McLennan, M., Effective Tcl/Tk Programming : Writing Bet-

ter Programs with Tcl and Tk , Addison-Wesley professional computing series,

Addison-Wesley, Reading, MA, 1998.

[85] Flynt, C., Tcl/Tk for Real Programmers , AP Professional, San Diego, CA,

1999.

[86] Metcalf, M. and Reid, J. K., Fortran 90/95 Explained , Oxford University Press,

Oxford, New York, 2nd ed., 1999.

[87] Chapman, S. J., Fortran 90/95 for Scientists and Engineers , McGraw-Hill,

Boston, 2nd ed., 1997.

[88] “Fortran 90: A Conversion Course for Fortran 77 Programmers,” Manch-

ester and North High Performance Computing Training & Education Cen-

tre, http://www.hpctec.mcc.ac.uk/hpctec/courses/Fortran90/F90course.html,

November 2003.

[89] Coirier, W. J. and Jorgenson, P. C. E., “A Mixed volume grid approach for the

Euler and Navier-Stokes equations,” 34th AIAA Aerospace Sciences Meeting &

Exhibit, AIAA Paper 96-0762, Reno, NV, January 1996.

146

[90] Rizzi, A. and Viviand, H., “Numerical Methods for the Computation of Inviscid

Transonic Flows with Shock Waves : a GAMM workshop,” Notes on Numerical

Fluid Mechanics , Friedr. Vieweg & Sohn, Braunschweig, Wiesbaden, German,

1981.

[91] Manna, M., “A Three Dimensional High Resolution Upwind Finite Volume

Euler Solver,” von Karman Institute (VKI) Lecture Series 1992-180, April 1992.

[92] Kermani, M., “Modified Entropy Correction Formula for the Roe Scheme,” 39th

AIAA Aerospace Sciences Meeting & Exhibit, AIAA Paper 2001-0083, Reno,

NV, January 2001.

[93] Anderson, J. D., Modern Compressible Flow with Historical Perspective,

McGraw-Hill, New York, 2nd ed., 1990.

[94] White, F. M., Viscous Fluid Flow , McGraw-Hill, New York, 1991.

[95] Schlichting, H., Boundary-Layer Theory , McGraw-Hill, New York, 1979.

[96] Jiang, Y. T., Damodaran, M., and Lee, K. H., “High-Resolution Finite Vol-

ume Computation of Turbulent Transonic Flow Fast Airfoils,” AIAA Journal ,

Vol. 35, No. 7, July 1997, pp. 1134–1142.

[97] Wieghardt, K. and Tillmann, W., “On the Turbulent Friction Layer for Rising

Pressure,” NACA TM 1314, 1951.

[98] Patel, V. C., Rodi, W., and Scheuerer, G., “Turbulence Models for Near-Wall

and Low-Reynolds Number Flows: A Review,” AIAA Journal , Vol. 23, No. 9,

September 1985, pp. 1308–1319.

147

[99] Hellsten, A., “On the Solid-Wall Boundary Condition of ω in the k − ω-Type

Turbulence Models,” Tech. Rep. B-50, Laboratory of Applied Thermodynamics,

Helsinki University of Technology, Espoo, Finland, March 1998.

[100] Yoder, D. A. and Georgiadis, N. J., “Implementation and Validation of the

Chien k-epsilon Turbulence Model in the WIND Navier-Stokes Code,” 37th

AIAA Aerospace Sciences Meeting & Exhibit, AIAA Paper 99-0745, Reno, NV,

January 1999, See also, http://www.grc.nasa.gov/www/valid/fpturb/fpturb01/

fpturb01.html, November 2003.

[101] Han, Z. and Cizmas, P. G. A., “Prediction of Axial Thrust Load in Centrifugal

Compressors,” International Journal of Turbo & Jet-Engines , Vol. 20, No. 1,

2003, pp. 1–16.

[102] Cizmas, P. G. A. and Kim, K., “Parametric Study of Axial Thrust Load,” Tech.

rep., Turbomachinery Research Consortium, Texas A&M University, 2003.

[103] Karypis, G. and Kumar, V., “Multilevel Algorithms for Multi-Constraint Graph

Partitioning,” Tech. Rep. 98-019, University of Minnesota, Department of Com-

puter Science, 1998.

148

VITA

Kyusup Kim was born on May 2, 1969 in Seoul, Republic of Korea (South Korea).

He received his B.S. in Mechanical Engineering from Washington State University,

Pullman, WA in 1994 and received his M.S. in the Aerospace Engineering at Texas

A&M University in 1998. His research interests include adaptive unstructured mesh,

mesh optimization and high resolution flow solver. The author can be reached via

electronic mail at qkim@aggienetwork.com.

