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Dependence of the intrinsic spin-Hall effect on spin-orbit interaction character
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We report on a comparative numerical study of the spin-Hall conductivity in two dimensions for three
different spin-orbit interaction models; the standard k-linear Rashba model, the k-cubic Rashba model that
describes two-dimensional hole systems, and a modified k-linear Rashba model in which the spin-orbit cou-
pling strength is energy dependent. Numerical finite-size Kubo formula results indicate that the spin-Hall
conductivity of the k-linear Rashba model vanishes for frequency w much smaller than the scattering rate 7!,
with first-order relative fluctuations surviving out to large system sizes. For the k-cubic Rashba model case, the
spin-Hall conductivity does not depend noticeably on w7 and is finite in the dc limit, in agreement with
experiment. For the modified k-linear Rashba model the spin-Hall conductivity is noticeably w7 dependent but
approaches a finite value in the dc limit. We discuss these results in the light of a spectral decomposition of the
spin-Hall conductivity and associated sum rules, and in relation to a proposed separation of the spin-Hall
conductivity into skew-scattering, intrinsic, and interband vertex correction contributions.
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I. INTRODUCTION

Interest in spintronics'~® has been heightened by the tech-
nological impact of ferromagnetic metal-based devices and
by ferromagnetic semiconductor materials advances. Theo-
retical attention has recently focused on spintronics effects in
paramagnetic materials, and in particular on the spin-Hall
(SH) effect,” in which an electric field induces a transverse
spin current. Murakami et al.® and Sinova et al.® have argued
in different contexts that the spin-Hall conductivity can be
dominated by a contribution that follows from the distortion
of Bloch electrons by an electric field and therefore ap-
proaches an intrinsic value in the clean limit. The intrinsic
spin-Hall conductivity adds to the skew-scattering contribu-
tion that had been the focus of earlier theoretical work,”!0-11
and can be altered by disorder vertex corrections.

The proposed intrinsic spin-Hall conductivity has drawn
theoretical attention'>2° to this unfamiliar transport coeffi-
cient. It has been argued that the intrinsic spin-Hall conduc-
tivity does not survive in the diffusive transport thermody-
namic limit, either generally or for the specific case of the
two-dimensional electron system with Rashba spin-orbit
interactions?! (R2DES) studied by Sinova et al.® Several re-
searchers have pointed out that in the Rashba two-
dimensional electron gas case, ladder vertex disorder
corrections'>!620 in the Kubo formula lead to a vanishing
spin-Hall current. The same conclusion has been reached via
quantum Boltzmann theory'“!> calculations which capture
the same physics. These vertex correction claim is specific to
the R2DES case, and has specifically been discounted for
two-dimensional hole gases (2DHGs),*>?* p-doped bulk
semiconductors, and the modified Rashba coupling case.?*
Several numerical studies basing on the Landauer-Buttiker
approach in mesoscopic systems with leads have also been
performed, but lack of clear trends in the size dependence of
the spin-Hall conductances they evaluate,>7 and the possi-
bility of edge effects near the contacts, cannot be connected
to the possibility of the spin-Hall effect in the thermody-
namic limit.
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In this article we approach these issues numerically by
evaluating the finite-size Kubo formula?®-3° for the spin-Hall
conductivity for two-dimensional electron systems with three
different spin-orbit coupling models. The motivation for the
models we have chosen follows from the parsing of spin-
Hall conductivity contributions illustrated schematically in
Fig. 1. Quite generally, the charge and spin-current operators
are diagonal in Bloch wave vector in any model with a spin-
independent impurity potential, but have matrix elements
that are both diagonal and off-diagonal in band index. (The
models we study have only two bands, and it is usually con-
venient to consider them as representing the two spin states
of a spin-1/2 particle.) The presence of diagonal matrix
elements means that current will not decay in a perfect
crystal and the longitudinal conductivity (and Hall conduc-
tivity) is consequently limited by disorder scattering of
Bloch states.

We start from a linear response Kubo formula approach:*

Kj,(0) - K3,(0)
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jz is the a component spin or charge current in u direction,
and () is the volume of the system. When disorder is treated
perturbatively, the standard ladder diagram approximation
expresses the kernel K in Eq. (2) in the following form:*

1
KS (iv,) = ﬂ—QE ol j5G(Kk.4,+ v,)),G(k.5,)].  (3)
K.Z,

where G is a Matsubara formalism Born-approximation
Green function, J, is the current operator renormalized by
ladder-diagram vertex corrections, and all four quantities are
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FIG. 1. Schematic diagrammatic representation of intrinsic, in-
terband coherence vertex correction, and skew-scattering contribu-
tions to the spin-Hall conductivity. The total spin current (left vertex
- open circle corresponding to j°={v,s.}/2) induced by an electric
field (right vertex - dark circle corresponding to j=—ev) can be
separated into a contribution from the density-matrix response that
is off-diagonal in band index and a contribution from the density-
matrix response that is diagonal in band index. The diagonal re-
sponse is dominated by a skew-scattering contribution that is in
general proportional to the Bloch electron scattering time 7. For the
models studied here, the spin-current operator is purely off-diagonal
in band index and the skew-scattering contribution is absent. The
off-diagonal response has a leading contribution, the intrinsic spin-
Hall conductivity, that is completely independent of disorder and is
a property of the host Bloch bands. Vertex corrections to the intrin-
sic spin-Hall conductivity are also independent of 7 in the limit of
weak scattering, but depend on both band structure and disorder
potential. The solid lines in the figure represent Born-approximation
Green functions.

matrices in certain bases. In this approximation the longitu-
dinal conductivity ends up being dominated by terms that are
diagonal in band index at each current vertex and end up
being proportional to the Bloch state scattering time 7. This
contribution captures the Boltzmann theory physics in which
the current is due to field-induced changes in the occupation
probabilities of Bloch states. It turns out that the spin-Hall
conductivity does in general have a corresponding contribu-
tion, but only if scattering violates the principle of micro-
scopic reversibility; i.e., only if the a— b scattering rate is
not equal to b—a scattering rate where a and b are Bloch
states. Indeed, this property is violated when scattering am-
plitudes are evaluated beyond the Born approximation, as
illustrated schematically in Fig. 1, and the spin-Hall conduc-
tivity ends up being proportional to 7X S, where the skew-
ness S is a measure of the violation of microscopic
reversibility.*! The terminology we use here is borrowed
from the theory of the anomalous Hall effect in ferromag-
netic metals and semiconductors, which is strongly analo-
gous to the spin-Hall effect in paramagnetic metals and semi-
conductors. We identify the contribution to the spin-Hall
conductivity that is proportional to 7 and due to changes in
Bloch state occupation probabilities, i.e., to a response that is
diagonal in both wave vector and band indices, as the skew-
scattering contribution.”!%!! For the models we study here,
the spin-current operator is purely off-diagonal in band in-
dex, as we explain explicitly below. It follows that the skew-
scattering contribution to the spin-Hall conductivity vanishes
for the models we study.
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We define the intrinsic spin-Hall conductivity as the inter-
band spin-Hall conductivity o(w) of a disorder-free system,
which has a finite value in general in the w — 0 dc limit. This
quantity is a property of the band structure of the perfect
crystal, hence the term “intrinsic.” The dc limit of the inter-
band conductivity can, however, be altered by disorder even
in the limit of arbitrarily weak disorder, 7— o, as illustrated
schematically in Fig. 1. In perturbation theory the factors of
7! associated with Born-approximation disorder scattering
can be canceled by factors of 7 associated with products of
two Green functions that have the same band index. The
evaluation of the disorder correction to the interband spin-
Hall conductivity requires the evaluation of a ladder sum.
The renormalized current with the ladder correction is given
by solving the vertex equation

7|2
J(k;z2,2") =j(K) + >, [V = k)P

Q2 G(Kk',2)J(k';z,z)G(k',Z).
k’

(4)

Explicit evaluation of this ladder sum correction requires
some approximations and can normally be accomplished
only for very simple disorder models, or in the limit of
small spin-orbit interactions. These limitations of
perturbation theory motivate the numerical study reported on
here.

We have reported previously on the influence of disorder
on the spin-Hall conductivity of the k-linear Rashba model,
concluding that it remains finite in the thermodynamic
limit.?” This conclusion is at odds with our current numerical
findings, extrapolating to infinite system size and then to
zero frequency, which are consistent with the perturbation
theory conclusion that the dc spin-Hall conductivity of this
model is zero. The numerical studies are complicated by the
strong frequency dependence and large fluctuations in the
spin-Hall conductivity that occur in finite-size calculations.
The earlier calculations erred by using the frequency depen-
dence of the longitudinal conductivity, which has corrections
that vary like (w7)? compared to the (w7)' dependence of the
spin-Hall conductivity discussed below, to judge whether or
not the dc limit has been reached. The new findings super-
sede the conclusions reached in Ref. 29 with regard to the
thermodynamic dc limit. Our numerical results for the
k-linear and k-cubic Rashba models are now consistent with
analytic calculations that consider only the thermodynamic
limit within the diffusive regime, hence resolving the contro-
versy that has been associated with the linear Rashba
model.*?

In the k-cubic Rashba model, which approximately de-
scribes two-dimensional valence band holes in a narrow
quantum well with structural inversion asymmetry,”>3* the
spin-Hall conductivity does not show measurable w7 depen-
dence. For this model, its w— 0 limit is consistent with the
pure intrinsic value. This observation suggests that the spin-
Hall induced edge spin accumulations recently seen in two-
dimensional hole systems® follows from the intrinsic spin-
Hall effect. We also study a modified Rashba interaction that
combines elements of the k-linear and k-cubic Rashba model
and provides an approximate model for conduction band
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quantum well states in inverted gap materials like HgTe.?” As
we explain below, the modified model has spin-orbit splitting
that varies like &, as in the k-cubic Rashba model, but a
wave-vector-dependent Zeeman field whose in-plane orien-
tation rotates once when the wave vector rotates once around
the Fermi surface as in the k-linear Rashba model. In pertur-
bation theory, the second property implies that an angular
integral that appears in the vertex correction calculation and
(for short-range impurity scattering) vanishes in the k-cubic
Rashba model, is nonzero. Vertex corrections to the intrinsic
spin-Hall conductivity survive for the modified model. Our
numerical results demonstrate, however, that the corrections
are present but do not cause the total spin-Hall conductivity
to vanish as it does for the k-linear Rashba model. The spe-
cial property of the k-linear Rashba model that causes the
spin-Hall conductivity to vanish is related to the equation of
motion of the spin operator.'7-?

Our paper is organized as follows. In Sec. II we describe
the spin-orbit coupling and disorder terms in the model we
study numerically. The spin-orbit interaction can be de-
scribed in terms of a position- and momentum-dependent
Zeeman field, whose orientation variation as a function of
the wave vector plays the key role in spin-Hall conductivity
calculations for these models. The disorder model we em-
ploy assumes a scalar random potential. We argue that as
long as the random potential is dominantly spin independent,
this assumption is not essential. In Sec. III we introduce the
finite-size-system Kubo formula that expresses the spin-Hall
conductivity in terms of Hamiltonian eigenstates of a finite-
size two-dimensional electron system with area L? and peri-
odic boundary conditions. The spin-Hall conductivity evalu-
ated using this formula tends to fluctuate wildly from
disorder realization to disorder realization and is very sensi-
tive to avoided level crossings that occur close to the Fermi
energy. These fluctuations are conveniently mitigated by
evaluating the spin-Hall conductivity for a continued com-
plex frequency w—z=in along the imaginary axis. The
dc spin-Hall conductivity should be evaluated by first letting
L?>— and then 7— 0. Our expectation is that for systems
much larger than a mean-free path in size, L> dependence
will appear only for 7 smaller than or comparable to the
finite-size level spacing SE. Thus, we should be able to
extrapolate to the dc value as long as systems sizes can
be reached numerically that are large enough to make
other characteristic energy scales like the spin-orbit
splitting and the lifetime broadening energy 7/ 7, much larger
than > JFE. In Sec. IV we present our numerical results for
the finite-size Kubo formula and discuss its extrapolation to
infinite system sizes. In Sec. V we discuss a spectral repre-
sentation for the spin-Hall effect and some associated sum
rules. In Sec. VI we discuss the equation of motion of the
spin operator for the k-linear Rashba model. Using the fact
that the time derivative of the spin operator is proportional to
the spin-Hall current for this model, we are able to demon-
strate that the finite-size spin-Hall conductivity is always
zero when averaged over boundary conditions. The typical
size of the spin-Hall conductivity fluctuation in a given
finite-size system is, however, much larger than the intrinsic
spin-Hall conductivity. Finally, in Sec. VII we present our
conclusions.
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II. MODEL HAMILTONIAN

We base our studies on a series of models with general-
ized Rashba spin-orbit interaction of the form

H=1%2m + ixg([k|) (k%0, — kSa), (5)

where m is the effective carrier mass, k,.=k,*ik,, and g is
either unity or a function of |k|. (We set =1 for simplicity.)
The Rashba model for an inversion asymmetric conduction
band quantum well is generated by choosing a=1 and g=1.
Valence band quantum wells have a more complex
structure.®® In the thin quantum well limit, light-hole bands
become energetically irrelevant and the heavy-hole bands
can be effectively described by Eq. (1) with @=3, the so-
called k-cubic Rashba model. We study in addition a
modified Rashba model with g=k%> and a=1 (ie., Hg
=N’k X 2]- @), which provides an approximate model for
conduction electron quantum well states in inverted gap
materials.” In the following, we use the Fermi energy Ej
and the inverse Fermi wave number k;' in the absence of
both spin-orbit coupling and disorder as the units of energy
and length, respectively. We take a disorder model consisting
of uncorrelated short-range scalar impurity potentials:
V(r)=3Yi V8(r-R)), which satisfies (V(q)V(q')")
=N,V?>8(q-q’), where V(q) is the Fourier component of V(r)
and N,=n,L? is the number of impurity scatterers, which we
take to correspond roughly to the number of carriers. We
choose this type of disorder potential model, rather than the
more realistic finite correlation length model utilized in pre-
vious studies?® in order to connect more directly with the
analytical results.

We diagonalize the finite-size disordered electron Hamil-
tonian in the A=0 eigenstate basis and introduce a hard cut-
off at a sufficiently large momentum A. (This means, of
course, that the disorder potential has an effective correlation
length ~A~'.) Our calculations are performed at a fixed car-
rier density ne=k12;/ 27 and at finite system sizes (see below)
up to 70k;l, larger than the mean-free path ~10k;1 and the
Fermi wavelength ~k'.

Finally, we introduce the charge- and spin-current opera-
tors. The charge-current definition, j=+ev=—0dH/JA, fol-
lows from the charge conservation continuity equation,
where the vector potential A must be included to obtain a
gauge-invariant expression. In a system with a spin-
rotational Hamiltonian, charge-spin components along arbi-
trary quantization axes are conserved separately and we can
introduce a spin-dependent vector potential, A=(xe)A,
+5,-A,; the spin current is given by j*=—-JH/JA ,. With this
definition, a continuity equation expresses local conservation
of each Cartesian component of spin. We retain the same
definition when spin-orbit interactions are included, although
the continuity equation is now violated because the Hamil-
tonian is spin dependent.

II1. FINITE-SIZE KUBO FORMULA FOR SPIN-HALL
CONDUCTIVITY

We start from linear response theory: Egs. (1) and (2). An
elementary calculation leads to the following formally exact
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expression for the static z-spin component spin-Hall conduc-
tivity,

ih f(Ea)_f(Ea’) <a
U;y ="
< E,-E,

jila'Xa'|jyle@)
E,~E,+in

(6)

where j;=edH/dp;, j,={0H/dp,,s.}/2, with s_ being (fi/2)o
for electrons and (34/2)c, for holes. In Eq. (6) i# can be
regarded as a complex frequency continued from the real
axis to the imaginary axis and can be interpreted as an elec-
tric field turn-on time. In metallic systems, like the ones
considered here, » must exceed the simulation cell level
spacing OF in order to obtain bulk values of the transport
coefficients considered. At the same time, 7 must be smaller
than all other intensive energy scales such as the Fermi en-
ergy Ep, the spin-orbit coupling splitting Agg, and the disor-
der broadening %/ 7, where 7 is the scattering time. The finite
value of 7 represents the coupling of a finite subsystem of a
macroscopic conducting sample to its environment, leading
for metallic systems to the loss of resolution of the discrete
individual energy levels of the subsystem. For a finite system
with periodic boundary conditions, the spin-Hall conductiv-
ity is a function of 6E/Er, n/Er, Ago/Er, and fi/7Er. The
macroscopic dc spin-Hall conductivity is obtained by ex-
trapolating finite-size results first to SE— 0 (L— o) and then
to n—0.

Numerical evaluation of the spin-Hall conductivity is
complicated by the substantial fluctuations in finite-size sys-
tem values when 7 is small. Following the seminal argu-
ments of Thouless and Kirkpatrick,?® the physically appro-
priate value for 7 is 7~ gSE, where g=2E7 is the Thouless
dimensionless conductance. The values of 7 quoted in our
results were calculated from the golden-rule expression for
the transport scattering rate, given by

wlr=2m> [Vk-k)(1 -k -K)SEy -Ep), (7)
k

which determines the Drude longitudinal charge conductivity
via op=ne’r/m=2Epm(e*/h). The variance of numerical
spin-Hall conductivities does appear to get smaller with sys-
tem size, to the extent that this trend can be judged from our
numerical results, but relative fluctuations in magnitude are
still larger than one at small 7 even for the largest system
sizes that we are able to study. In our calculations, the dis-
order averaged spin-Hall conductivity always has the same
sign as the intrinsic spin-Hall conductivity o7, negative for
the k-linear Rashba model, and positive for the k-cubic
Rashba model. In Fig. 1 we have chosen a sign convention in
which the intrinsic spin-Hall conductivity is defined as
positive.

IV. SPIN-HALL CONDUCTIVITY NUMERICAL RESULTS
A. k' Rashba model

In Fig. 2 we plot spin-Hall conductivities evaluated for
models with Ex7/fi=8 with Nkg/Er=0.2 and various system
sizes as a function of 7 in the k-linear Rashba model (top
panel), the k-cubic Rashba model (middle panel), and the
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modified Rashba model (bottom panel). We note that in the
regime where 7 is smaller than Ej, Agg, and #/7 but larger
than SE (plotted as a function of system size as an inset in
Fig. 2), the spin-Hall conductivity sometimes changes as a
function of 7, strongly so in the k-linear Rashba model case.
Taking the limit 7— 0, extrapolating from the regime where
n> OF is satisfied, we find that for the linear Rashba model
the spin-Hall conductivity is strongly suppressed in the ther-
modynamic limit. Our numerical results are consistent with
the conclusion from analytic calculations that ogy vanishes
for this model. The disorder strength dependence of the spin-
Hall conductivity for the k-linear Rashba model is shown in
Fig. 3, where ogy is plotted as a function of »7 and #n/Ep
(inset) fixing 7E at 10, 8, 6, and 4. These results are con-
sistent with the analytic theory conclusion that ogy
approaches the intrinsic value for w>7"!, but that it
vanishes for this model for w— 0. In perturbation theory, the
contribution to ogy that varies on the frequency scale 77!
comes from vertex corrections to the intrinsic interband
response. Our previous numerical results which reached
an incorrect conclusion on the dc value of ogy for this
model, were performed at a value of 7 which gives accurate
values for the dc longitudinal conductivity but, as we have
now learned by extrapolating 7— 0, not for the spin-Hall
conductivity.

B. k3 Rashba model

For the Rashba 2DHG, the spin-Hall conductivity is in-
sensitive to #; there is no evidence of a relative contribution
that has frequency dependence on the scale of 7!, This find-
ing indicates that vertex corrections to the intrinsic spin-Hall
conductivity, at least for the short-range disorder scattering
model we have studied, are absent or not notably large. We
find similar behavior over a wide parameter range of A and 7.
This finding is consistent with analytical studies of the spin-
Hall conductivity by Bernevig et al.,> who find the vertex
corrections vanish in this model. Our results should be com-
pared with those from other recent numerical studies of me-
soscopic spin transport based on lattice versions of the Lut-
tinger model for p-doped semiconductors. In both quantum
well*® and bulk cases,?® the intrinsic spin-Hall conductance is
found to be robust against disorder, in agreement with the
present result. In addition, as shown in the inset, the exact-
diagonalization numerical results are in very good agreement
with analytic calculations that correct for disorder only by
including finite-lifetime corrections to the Green functions
that appear in the intrinsic diagram. (This approximation is
referred to in the figure as the relaxation time approxima-
tion.) This implies that the intrinsic effect will be dominant
in sysltems with strong spin-orbit coupling satisfying )\kz
>hr .

C. Modified Rashba model

The modified Rashba model has properties intermediate
between those of the k! Rashba and k* Rashba models since
the energy spectrum is identical to that of the > model, but
the eigenstates are the same as those of the k! model. In this
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n—0.

n/ Eg

case the 7 dependence of the spin-Hall conductivity is shown
in Fig. 2(c). We find a smooth deviation of ogy at small 7
region. The numerical calculations do find indications of de-
pendence on 77, implying that vertex corrections to the in-
trinsic spin-Hall conductivity do not vanish. However, the
overall spin-Hall conductivity remains finite in the limit
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FIG. 2. (Color online) Spin-
Hall conductivity for a variety of
system sizes as a function of # in
the k-linear Rashba model (top
panel), k-cubic Rashba model
(middle panel), and modified
Rashba model (bottom panel). All
of these results are for the
case Ep7/h=8 and Nkp/Ep=0.2.
Inset in panel (a): Level spacing
as a function of system size. The
results shown in this figure
correspond to level spacings
varying between ~0.003Ej and
~0.005Er. Inset in panel (b):
Disorder strength dependence of
the spin-Hall conductivity for
the &* Rashba model. The
de  [lim,, o limsz o osu(7, 5E)]
spin-Hall conductivity appears to
vanish for the k-linear Rashba
model case only.

No analytic studies of vertex corrections in this model
have been reported to date, although related models?* have
been studied. Using a formalism similar to that developed in
Ref. 23, we evaluate the vertex correction to the renormal-
ized current. In the limit of Ago7>1 the vertex correction
can be expressed in terms of §j,=J,—j,= dj’,0;. For short-
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FIG. 3. (Color online) Spin-Hall conductivity as a function of
the relaxation time 7 in the k-linear Rashba model plotted as a
function of 77. Inset: Same quantity plotted as function of disorder
strength Ep7=10,8,6,4. These results demonstrate that the spin-
Hall conductivity has a contribution with frequency dependence on
the scale 7!, and are consistent with the conclusion that the dc
spin-Hall conductivity vanishes.

8ji(z,2) = 2;2 Tr{o:G(k,2)j,G(k,z')],  (8)

mrvel?

where vy is the density of states in the absence of spin-orbit
coupling. After a straightforward calculation, we obtain the
following expression: &)’ =—e€,,(1/2mvp)[vpkp,—vp_kp_]
~(3/2vpN) €, [ vp, ki, +vp_kr_], where kg, and vp, are the
Fermi wavelength and the density of state in the * band,
respectively. The spin-dependent Fermi wavelengths and
densities of states that appear above are given by

Vpye = Vp(l + 3m)\kp)_l (9)
and
1 —_—
kF+—kF_=—M[1 — 1 —8(m\kp)?]. (10)

In the weak spin-orbit interaction limit, Agq/E,<<1, these
may be approximated by vp. — vp(1 F3mNkr) and kg,
—kF_—>—2m)\k§, and the vertex correction ends up being
g =—)\k12p[2>< o], which cancels the intrinsic contribution to
the spin-Hall conductivity. On the other hand, beyond the
small spin-orbit coupling limit, the exact cancelation be-
tween intrinsic and vertex contributions does not take place,
consistent with the above numerical result. This is in sharp
contrast with the k-linear Rashba model where the cancela-
tion appears to hold for arbitrarily strong spin-orbit coupling.
We comment further on this special property of the k-linear
Rashba model later in the paper.

V. SPECTRAL REPRESENTATION OF THE SPIN-HALL
EFFECT AND SUM RULES

The finite-size Kubo formula for the spin-Hall conductiv-
ity [Eq. (6)] may be expressed in the form
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Im{{alji|a’)e'|j|a)]
(Eu—E )+ 7

h
os=13 2 U(ED ~f(E,)]

(11)

This form is based partly on our finding that the dissipative
contribution to the spin-Hall conductivity, which is not in-
cluded in the above expression, is vanishing, analogous with
the case of a charge-Hall conductivity, the dissipative term
strictly vanishes when spatial invariance is recovered by av-
eraging over disorder realizations.

It is instructive to consider the following spectral decom-
position of the spin-Hall conductivity,

OgH = fw dE N(E) (12)

o E+n

where
2
ME) =75 > [AE,) = fEHm[{alj|a’ Xa'|j,|a)]

XSE-E,+E,). (13)

In the following, we first focus on the ordinary k-linear
Rashba model. ogy depends on both the phase and the mag-
nitude of the matrix elements in Eq. (6) and on the energy
differences of the levels involved. The size of the matrix
elements is characterized by the integral of N(E) over all
energies which satisfies the following sum rule:

. h —eh\
J dEN(E)=pEf(Ea)ImKal[j;,jx]laﬂ= eLz > f(E,)
0 a m a
— eh*(Hyo)
X<a|wyo”|a>=#zM0' (14)

The final form for the zeroth moment of the Hall spectral
function (M°) in Eq. (14) follows from the observation that
the two terms in the Rashba spin-orbit interactions must have
identical expectation values if isotropy is recovered in the
thermodynamic limit. For %/7<Agq, (Hso) is close to its
value in the perfect crystal state. We note that this expression
is valid both in the presence (see below) and absence of an
external magnetic field and that 7, is the kinetic momentum
in the y direction.

The left panel in Fig. 4 shows the spectral function N(E)
as a function of E at Nky/Ep=0.2 and at two disorder
strength Ex7=10 and Ep7=4. N(E) has a positive peak at E
corresponding with the spin-orbit splitting 2Nk (kg and kp_
are approximately equal) and becomes negative with very
small magnitude at small E. The negative contribution at
small E corresponds to the vertex correction contribution to
the spin-Hall conductivity. The large peak near the spin-orbit
splitting energy corresponds to the intrinsic contribution to
the spin-Hall effect. In the limit of small spin-orbit coupling,
the energetic width of the interband peak vanishes and the
intrinsic spin-Hall conductivity is proportional to the ratio of
the sum rule and the square of the spin-orbit splitting. The
vertex correction contribution is enhanced in ogy by small
energy denominators.
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FIG. 4. (Color online) The spin-Hall spectral function N(E) in the absence (top-left panel) and presence (bottom-left panel) of a magnetic
field. The right panels show the corresponding single-electron energy spectra in the absence of disorder.

As first emphasized by Rashba,'® insight into the spin-
Hall conductivity of the linear Rashba model can be
achieved by introducing an external magnetic field. Letting

ik — —ih V +eA(r), (15)

we introduce a magnetic field B perpendicular to the plane
[A(r)=ByX]. The charge current and the spin current in this
case are given by j=—e(i/h)[H,r]=—e(mwm/m—\Z X o) and
J={@/m,0,/2}/2, respectively, where wm=—ihAV +eA(r) is
the kinetic momentum. We consider the case of Landau level
filling factor v=7 and N/lzw.=2 as an example in the fol-
lowing. The energy spectra are linear in the Landau level
index in both bands and the spin-orbit splitting near the
Fermi level is approximately 5Aw,, as shown in right-bottom
panel in Fig. 4. We find that the spectral function N(E) has
several peaks. The two leftmost peaks can be identified as
the intraband contributions that evolve into the vertex correc-
tion at zero field, while the rest correspond to the interband
contributions that give the intrinsic spin-Hall effect. Interest-
ingly, the intraband contribution has both positive and nega-
tive peaks, with the negative peak appearing at lower energy
and therefore having a larger contribution to the spin-Hall
conductivity. As pointed out by Rashba,'® the intraband and

interaband contributions to ogy cancel, as in the zero field
case with disorder discussed above.

VI. WHAT IS SPECIAL ABOUT THE K-LINEAR RASHBA
MODEL?

Perturbation theory calculations and these numerical cal-
culations consistently indicate that the k-linear Rashba model
has zero spin-Hall conductivity for any scalar random poten-
tial. This property is special to the k-linear model and is not
generic, as indicated for example by our numerical results for
the other models considered in this paper. How should we
understand this exceptional behavior? One possibility is to
explain it in terms of vertex corrections to the model’s cur-
rent operator, which cancel spin-dependent contributions on
the Fermi surface. This explanation is not fully satisfactory,
however, since the spin-Hall conductivity depends partly on
contributions away from the Fermi surface, and the same
cancelation does not cause the charge Hall conductivity of
corresponding ferromagnet models to vanish. Instead, as dis-
cussed previously elsewhere in the literature,'’?° the source
of the special behavior is almost certainly the following ex-
act relationship between the time dependence of the total
spin operator and the spin-current operator:
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2m
s, = i[Hg,sJ/h = P —j

(16)
(This type of relationship between in-plane spin equation of
motion and in-plane spin current can be generalized to any
model with spin-orbit coupling that is linear in momentum,
so that most of the conclusions reached below to the 2D
Dresselhaus model and even to models that include both
Dresselhaus and Rashba interactions and do not have circular
Fermi lines.) Since the spin density must approach a constant
in the steady state, it follows that the nonequilibrium steady
state expectation value of the left-hand side of this equation,
and hence also of the right-hand side, must vanish. We be-
lieve that this argument is essentially valid, although there is
subtlety in its application because the conductivity is defined
by taking the thermodynamic limit and then the dc limit.
(The same argument, naively applied, could be used to prove
that the drift velocity vanishes in the steady state induced by
an external electric field.) Below we discuss the implications
of this identity for the finite-size spin-Hall conductivity cal-
culations, and then discuss some of its implications for semi-
classical descriptions of spin transport in the Rashba model
and other systems.

A. Finite-size Kubo formula

We start by considering the linear response of an in-plane
spin component to a constant change in the vector potential
in a finite-size system. The vector potential change gives rise
to a perturbation H' =—j- 6A:

oS . o
Ef’(w) éfo dl(hu(t)’J'V]>e’(“’+”7)l/L2
E,) - f(E,
2 % (nlsn")n']j,|n).
(17)

For a square finite-size system with side L, a change in vec-
tor potential by 8A, corresponds to a change in the boundary
condition phase by 27wLJA /P, where @ is the electron
flux quantum. Using the relation between the time depen-
dence of the spin operator and the spin-current operator, it
follows that

(ith)(E, — E,/){n|s,|n") = (18)
Comparing with Eq. (6), we find that
h* 85
=——*F 19
0,,(2) = 2N A, (2), (19)

where z=w+i7n is a complex frequency. This is an exact
expression for the k-linear Rashba model with arbitrary sca-
lar impurities. For a disordered R2DES, s, in general has a
boundary condition and disorder potential-dependent expec-
tation value «L, corresponding therefore to a spin-density
per unit volume that vanishes in the thermodynamic limit.
Because the z— 0 value of the spin-density response to vec-
tor potential is proportional to the derivative of the ground
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state spin density with respect to boundary condition phase
angle in the direction of the vector potential,

i K> 48,
im ogy = —,
7—0 SHT 2mAL d,

(20)

it is evident that the average of the z— 0 value of this re-
sponse function over boundary conditions is zero. (Since the
spin density must be a periodic function of ¢, with period
21, the integral of its derivative over any period must vanish.
In Eq. (20) ¢, is the boundary condition phase angle in the
y-direction and S,=Tr[po,/2].) This appears to be the con-
clusion that can most confidently be drawn about Kubo for-
mula properties from Eq. (16). For =0, the typical value of
the spin-Hall conductivity at a particular boundary condition
is large in magnitude, indicative of large persistent spin cur-
rents in finite-size systems. Our numerical results for the
spin-Hall conductivity appear to be consistent with the natu-
ral ansatz that averaging over boundary conditions is equiva-
lent to averaging over disorder realizations in finite-system
calculations of the spin-Hall conductivity. The fact that these
averages at 7=0 appear to yield the same values for the
spin-Hall conductivity as extrapolations from #> dE, guar-
antees that the equation of motion argument for vanishing
spin-Hall conductivity in the linear Rashba model is valid.

We note that it is possible to establish that the spin-Hall
conductivity vanishes at integer Landau level filling factors
in the absence of disorder without appealing to a concrete
calculation by using total spin equation of motion identities.
In this case, the boundary condition phase angle ¢, just cor-
responds to an x-direction guiding center shift in a transla-
tionally invariant system. In sharp contrast to the zero field
case, there is no ¢, dependence in the absence of disorder;
the result for any boundary condition equals the zero result
obtained by averaging over boundary conditions. Because of
the gap between Landau levels, no subtleties arise in taking
the thermodynamic limit. The spin-Hall conductivity clearly
vanishes at any integer filling factor.

The literature contains some arguments that the spin-Hall
conductivity vanishes for any model. For example, Sheng et
al.*® have performed a numerical simulation similar with
present work, and have concluded that the spin-Hall effect of
source of the zero spin-Hall conductivity of the linear
Rashba model is more general. In particular, they argue that
because all energy eigenvalues have anticrossing behavior as
a function of boundary conditions (or equivalently flux &
through a cylindrically shaped sample) spin transports cannot
arise. We note that the linear response regime attains with
external field eEL=—ed®/dt, small compared with all rel-
evant energy scales, but larger than the level spacing JF to
generate Landau-Zener tunneling through anticrossing gaps.
Consequently, the adiabatic argument of Ref. 30 cannot cap-
ture the linear response of the spin transport. We rather con-
clude that strong suppression of the spin-Hall conductivity is
an accidental property of particular models, not a generic
effect. As we have seen in this article, the k-cubic model
gives a good example of a model for which the intrinsic
spin-Hall effect is dominant. The spin-Hall effect observed in
this model can be understood as an intrinsic effect.?*3¢ We
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note that the spin-Hall effect is observed as spin accumula-
tion. Although there is no analytic theory of spin accumula-
tion due to an intrinsic spin-Hall effect, we note that numeri-
cal studies of spin accumulation’!*? show little accumulation
in the k-linear Rashba model and robust accumulation in the
k-cubic model. These results are consistent with the present
spin transport study and a naive theory of spin accumulation.

B. Implication for semiclassical theory of coupled charge and
spin transport

From the equation of motion for the density matrix, it
follows quite generally that the time derivative of the spin-
density can be related to the equation of motion for the av-
eraged spin-density:

as, d
= ETr[p(l)gzﬁ] (21)

In the steady state that balances acceleration by an external
electric field with disorder scattering, the density matrix p is
constant and the spin-density is expected to saturate at a
finite value. As discussed above, it follows from this argu-
ment that JZOC(d/dt)Tr[pa'ﬂ/ 2] vanishes. It is interesting to
compare the single-band semiclassical theory of spin
transport'? with this result. In a homogeneous system, this
theory describes the spin-density dynamics by the following
equation:

s, 1 df 2mN .. S
e : - = azine Ep
o —ngTr[fs#+(dt)sﬂ]—— . T~ .

(22)

The first term in the first form for the right-hand side corre-
sponds to the spin torque term, which describes spin-density
dynamics in the absence of collisions. The effect of colli-
sions which scatter electrons between Bloch states is ac-
counted for by the second term.!? In the final form for the
right-hand side we have introduced the relaxation time ap-
proximation for the scattering term and recognized that the
collision-free expression for the spin-density evolution is
proportional to the Hall spin-current in the absence of colli-
sions and hence to the intrinsic spin-Hall conductivity. In the
strong spin-orbit scattering limit on which we focus, the spin
relaxation time”!# that appears in this equation may be ap-
proximately identified with the momentum relaxation time.
The steady state in-plane spin-density induced by an electric
field is proportional to the intrinsic spin-Hall conductivity
and to the momentum relation time 7. We know that above
semiclassical argument of the spin-Hall conductivity fails to
capture vertex corrections, because it does not properly ac-
count for the influence of disorder on the interband compo-
nents of the density matrix response.*? Since vertex correc-
tions also change the value of the in-plane spin induced by
an electric field,'? this theory may also fail to account quan-
titatively for the value of in-plane spin density induced by an
external electric field.

VII. SUMMARY

In this article, we have studied spin transport driven by an
electrical potential bias in two-dimensional electron and hole
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systems with spin-orbit coupling due to structural inversion
asymmetry, primarily using finite-size exact diagonalization
as a tool. We have studied three different models of spin-
orbit coupling, the standard k-linear Rashba model, a k-cubic
Rashba model appropriate for two-dimensional hole systems
in narrow quantum wells, and a modified k-linear Rashba
model with eigenspinors like that of the standard Rashba
model and eigenvalues like that of the k-cubic Rashba
model. In these systems, a current of spins oriented perpen-
dicular to the two-dimensional layer flows perpendicular to
the direction of the electric field, an effect known as the
spin-Hall effect. For the models we have studied, the expec-
tation value of the spin current in the perfect crystal Bloch
eigenstates is zero, implying that there is no skew-scattering-
induced Bloch state occupation number change contribution
to the spin-Hall effect. The spin-Hall effect is due entirely to
interband coherence induced in the system by the electric
field. When disorder is treated perturbatively, the spin-Hall
effect can be separated into an intrinsic contribution that is a
property of the perfect crystal electronic structure along, and
a disorder-related vertex correction contribution that remains
finite even when the scattering rate vanishes. This vertex
correction is partially analogous to the scattering angle
weighting correction that vertex corrections introduce into
the theory of the longitudinal conductivity.

The three models we study differ qualitatively on how
vertex corrections alter the intrinsic spin-Hall effect. We
evaluate the spin-Hall conductivity numerically for a finite
system and at a finite frequency i# continued to the imagi-
nary axis. The frequency # can be thought of as a turn-on
rate for an electric field, or as energy level broadening due to
the coupling of the small system being studied numerically
to the rest of a macroscopic sample. The thermodynamic
limit dc spin-Hall conductivity must be calculated by first
letting the system size become large and then letting 7— 0;
the vertex correction appears as a dependence of the spin-
Hall conductivity on #7. In the k-linear Rashba model we
find that the spin-Hall conductivity depends strongly on 77,
vanishing for »— 0. This finding is consistent with analytical
calculations that have shown that the vertex correction
strongly suppresses the intrinsic contribution to the spin-Hall
conductivity for this model. For the k-cubic Rashba model
we find that vertex corrections vanish, a finding that may
hold only for the short-range disorder scattering model we
apply. For the modified k-linear Rashba model, the vertex
corrections do not vanish and alter the intrinsic spin-Hall
effect by a fraction that decreases with increasing spin-orbit
coupling strength. Taken together, these results demonstrate
that the intrinsic interband spin-Hall conductivity can be al-
tered by vertex corrections, depending on details of the elec-
tronic structure and the disorder potential. The special situa-
tion that leads to a vanishing total spin-Hall conductivity for
the k-linear Rashba model is related to the relationship be-
tween spin equations of motion and spin-currents that applies
only for systems with spin-orbit coupling that is linear in
momentum. Since the spin-Hall conductivity of the k-cubic
model is purely interband, and vertex corrections are weak
for this model, we conclude that the spin-Hall-induced spin
accumulation observed in a two-dimensional hole gas by
Wunderlich et al.®® (for which the k-cubic model is appli-
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cable), must be due primarily to the intrinsic spin-Hall effect.
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