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Production of DsJ(2317) mesons in relativistic heavy ion collisions at the BNL Relativistic Heavy Ion
Collider is studied. Using the quark coalescence model, we first determine the initial number of DsJ(2317)
mesons produced during hadronization of created quark-gluon plasma. The predicted DsJ(2317) abundance
depends sensitively on the quark structure of the DsJ(2317) meson. An order-of-magnitude larger yield is
obtained for a conventional two-quark than for an exotic four-quark DsJ(2317) meson. To include the hadronic
effect on the DsJ(2317) meson yield requires the absorption cross sections of the DsJ(2317) meson by pions,
ρ mesons, anti-kaons, and vector anti-kaons, which we have evaluated in a phenomenological model. Taking
into consideration the absorption and production of DsJ(2317) mesons during the hadronic stage of heavy ion
collisions via a kinetic model, we find that the final yield of DsJ(2317) mesons remains sensitive to its initial
number produced from the quark-gluon plasma, providing thus the possibility of studying the quark structure of
the DsJ(2317) meson and its production mechanism in relativistic heavy ion collisions.
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I. INTRODUCTION

A narrow DsJ(2317) meson was recently observed by the
BABAR Collaboration [1] in the inclusive D+

s π0 invariant
mass distribution from e+e− annihilation and confirmed by
the Belle Collaboration in B meson decay [2]. This meson
has the natural spin-parity JP = 0+ and a mass below that
obtained from the QCD sum rule approach [3] and quark
model calculations [4] for a normal two-quark state cs̄. The
DsJ(2317) meson has thus been considered as a possible
candidate for the exotic four-quark states that were studied in
the bag model [5,6], QCD sum rules [7], and the nonrelativistic
potential model [8]. It is also possible that the DsJ(2317)
meson is simply a DK molecule or atom. Determination of the
DsJ(2317) meson width is limited by experimental resolutions
to a value of less than 4.6 MeV/c2 [2]. The small width of
the DsJ(2317) meson is not surprising, as its mass is below
the threshold of the DK system and can only decay into the
kinematically allowed but isospin violated channel of the Dsπ

state. Theoretically, the decay width of DsJ → Dsπ has been
studied using the QCD sum rules, and its value varies from a
few keV [9] to a few tens keV [10] depending on the assumed
flavor state of four quarks or two quarks, respectively. A more
phenomenological approach based on the 3P0 model [11] also
gives a narrow width of about a few tens keV for a normal
two-quark DsJ(2317) meson.

Studying the mechanism for DsJ(2317) meson production
in nuclear reactions is useful for understanding its quark
structure. In Ref. [12], a coupled-channel quark model was
used to study the production of a two-quark DsJ(2317) meson
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and its radial excitations in hadronic reactions. Production of
DsJ(2317) in relativistic heavy ion collisions has also been
studied [13]. It was found that for a four-quark DsJ(2317)
meson, a much larger yield is obtained if one takes into account
the diquark-diquark interactions in the produced quark-gluon
plasma. Since the DsJ(2317) meson is not expected to
survive in the quark-gluon plasma, it is more likely to be
produced at hadronization of the quark-gluon plasma either
statistically or via quark coalescence. Its final abundance in
a heavy ion collision depends also, however, on its absorp-
tion and production probability in the subsequent hadronic
matter.

In the present paper, we study DsJ(2317) meson production
in central heavy ion collisions at the BNL Relativistic Heavy
Ion Collider (RHIC) in a kinetic model that starts from the final
stage of the quark-gluon plasma, goes through a mixed phase
of quark-gluon and hadronic matters, and finally undergoes
the hadronic expansion. The production of DsJ(2317) mesons
from the quark-gluon plasma is modeled by the constituent
quark coalescence model, which has been shown to describe
reasonably well not only the particle yields and their ratios [14]
but also their transverse momentum spectra and anisotropic
flows [15–17]. The predicted number of DsJ(2317) mesons is
found to depend on its quark structure, with the two-quark
state giving an order-of-magnitude larger value than the
four-quark state. The DsJ(2317) meson can be absorbed and
produced in subsequent hadronic matter via the reactions
πDsJ ↔ K∗D(KD∗), ρDsJ ↔ KD, K̄DsJ ↔ ρD(πD∗),
and K̄

∗
DsJ ↔ πD. The cross sections for these reactions

are evaluated in a phenomenological hadronic model with
coupling constants and form factors involving the DsJ(2317)
meson determined from the QCD sum rules. Taking into
account the hadronic effect in heavy ion collisions via a
kinetic approach, we find that the final number of DsJ(2317)
mesons remains sensitive to its initial number produced
from the quark-gluon plasma. Studying DsJ(2317) meson
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production in heavy ion collisions thus provides the possibility
of studying both its production mechanism and its quark
structure.

This paper is organized as follows. In Sec. II, the dynamics
of heavy ion collisions at RHIC is described. Production of
the DsJ(2317) meson from the initial quark-gluon plasma via
the quark coalescence model is discussed in Sec. III. The
absorption cross sections of the DsJ(2317) meson by hadrons
such as the pion, ρ, anti-kaon, and vector anti-kaon as well
as their thermally averaged values are evaluated in Sec. IV.
Solving the rate equation based on a kinetic model, the time
evolution of the DsJ(2317) meson abundance in heavy ion
collisions is presented in Sec. V. A summary is then given in
Sec. VI. Details on the derivation of an approximate analytical
coalescence formula for DsJ(2317) meson production from the
quark-gluon plasma is given in Appendix A, while those on
the QCD sum-rule approach to the determination of the form
factor at the DsJDK vertex, which is needed in calculating
the DsJ(2317) meson absorption cross sections, is described
in Appendix B.

II. HEAVY ION COLLISION DYNAMICS AT RHIC

To model the dynamics of central relativistic heavy ion
collisions after the end of the quark-gluon plasma phase, we
use the schematic model of Ref. [18] based on the boost
invariant picture of Bjorken [19] and an accelerated transverse
expansion. Instead of solving the hydrodynamic equation with
certain equations of state, we take the volume of produced
fire-cylinder in central Au+Au collisions at

√
sNN = 200 GeV,

which is the collision we are interested in, to evolve with the
proper time according to

V (τ ) = π [RC + vC(τ − τC) + a/2(τ − τC)2]2τc, (1)

where RC = 8 fm and τC = 5 fm/c are final transverse and
longitudinal sizes of the quark-gluon plasma, while vC = 0.4c

is its transverse flow velocity at this time. The total transverse
energy of quarks and gluons in the midrapidity (|y| � 0.5)
is then about 1067 GeV if quarks and gluons are taken to be
massive with mg = 500 MeV, mu = md ≡ mq = 300 MeV,
and ms = 475 MeV in order to take into account the nonpertur-
bative effects of QCD near the critical temperature [20], and
if the quark strangeness and baryon chemical potentials are
taken to be µs = 0 and µb = 10 MeV, respectively, to account
for strangeness neutrality in the quark-gluon plasma and the
observed final antiproton to proton ratio of about 0.7 at RHIC.
The fire-cylinder then goes through a mixed phase of partonic
and hadronic matters at a constant temperature TC until
τH = 7.5 fm/c when its transverse radius and flow velocity are
RH ≈ 9 fm and vH ≈ 0.45c, respectively. This corresponds
to a small transverse acceleration a = 0.02 c2/fm, which is
chosen to reflect the small pressure near phase transition and
in hadronic matter [21] as well as to obtain a lifetime for
the expanding matter comparable to that from the transport
model [22]. Values of other parameters of the fire-cylinder
are determined from fitting the measured transverse energy
�788 GeV as well as the extracted freeze-out temperature

TF = 125 MeV and transverse flow velocity � 0.65c of
midrapidity hadrons in central Au+Au collisions at

√
sNN =

200 GeV. Both the fraction of hadronic matter during the
mixed phase and the time dependence of the temperature of the
fire-cylinder after the mixed phase are determined by assuming
that the fire-cylinder expands isentropically. It was found in
Ref. [18] that the former increases approximately linearly and
the latter can be parametrized as

T (τ ) = TC − (TH − TF )

(
τ − τH

τF − τH

)0.8

, (2)

where TH is the temperature of the hadronic matter at the
end of the mixed phase and is thus the same as the critical
temperature TC for the quark-gluon plasma to hadronic matter
transition. As in Ref. [18], we take TH = TC = 175 MeV.
The freeze-out temperature TF = 125 MeV then leads to a
freeze-out time τF ≈ 17.3 fm/c.

For normal hadrons such as pions, kaons, anti-kaons, and
nucleons, they are taken to be in chemical equilibrium with
the baryon chemical potential µB = 30 MeV, charge chemical
potential µQ = 0 MeV, and strangeness chemical potential
µS = 10 MeV. The nonzero strange chemical potential is
needed to account for the observed K−/K+ ≈ 0.9 ratio in
heavy ion collisions at RHIC. Neglecting the time dependence
of the chemical potentials, which have been shown to vary
weakly with the temperature of an isentropically expanding
matter in heavy ion collisions at RHIC [23], time evolution
of the abundance of pions, kaons, anti-kaons, and nucleons
has been shown in Fig. 1 of Ref. [18]. Including also the
contributions from the decays of resonances, the time evolution
of the abundance of these hadrons is shown in Fig. 1(a). It is
seen that the total numbers of pions, kaons, and anti-kaons
do not change much during the hadronic stage, while the
nucleon number decreases significantly as temperature drops.
Their final numbers at freeze-out are 926, 133, 113, and 47,
respectively, and are close to those measured in experiments.

(a)

(b)

FIG. 1. (Color online) Time evolution of the abundance of pions,
kaons, anti-kaons, and nucleons including contributions from decays
of resonances (a) and the ratio of anti-baryon to baryon abundances
(b) of mid-rapidity particles in central Au+Au collisions at

√
sNN =

200 GeV.
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In Fig. 1(b), the time evolution of the ratio of anti-baryons to
baryons is shown, and it changes from an initial value of 0.75
to a final value of 0.66, which is also close to the measured
value of about 0.7.

III. DsJ(2317) MESON PRODUCTION FROM THE
QUARK-GLUON PLASMA

A. Coalescence model

In the coalescence model, the number of DsJ(2317) mesons
that are produced from the quark-gluon plasma is given by the
product of a statistical factor gDsJ which denotes the probability
of combining cs̄ or cs̄qq̄ quarks into a color neutral, spin 0,
and isospin 0 hadronic state and depends on whether the
DsJ(2317) meson is a two-quark or four-quark state, and
the overlap of the quark phase-space distribution function
fq(xi, pi) in the fire-cylinder with the Wigner distribution
function f W

DsJ
of the DsJ(2317) meson. The latter corresponds

to the probability of converting the above partonic state into
DsJ(2317) and is dependent on the quark spatial wave functions
in the DsJ(2317) meson. Explicitly, the DsJ(2317) number is
expressed as

N coal
DsJ

= gDsJ

∫
σC

n∏
i=1

pi · dσi d3pi

(2π )3Ei

fq(xi, pi)

× f W
DsJ

(x1 . . . xn; p1 . . . pn), (3)

with n = 2 or 4 for a two-quark or four-quark DsJ(2317)
meson. Similar expressions have previously been used for
studying the production of strange hadrons [24], charmed
mesons [25], and penta-quark baryons [18] from the quark-
gluon plasma formed in relativistic heavy ion collisions.

We note that the coalescence model can be viewed as
the formation of bound states from interacting particles with
energy mismatch balanced by other particles in the system.
Neglecting such off-shell effects is reasonable if the binding
energy is not large and/or if the production process is fast
compared to the inverse of the energy mismatch.

Since the normalized quark wave function of the DsJ(2317)
meson in the color-spin-isospin space can be expressed as a
linear combination of all possible orthogonal flavor, color,
and spin basis states, with coefficients depending on the quark
model used for the DsJ(2317) meson, then gDsJ is simply given
by the probability of finding these quarks in any one of these
color-spin-isospin basis states, i.e., gDsJ = 1/32 × 1/22 =
1/36 or 1/34 × 1/24 = 1/1296 for a two-quark or four-quark
DsJ(2317) meson, respectively.

The dσ in Eq. (3) denotes an element of a spacelike
hypersurface σC at hadronization [26]. In terms of the proper
time τ = (t2 − z2)1/2, the longitudinal momentum-energy
rapidity y = 1

2 ln (E+pz

E−pz
) and space-time rapidity η =

1
2 ln ( t+z

t−z
), the polar coordinates r and φ in the transverse

plane, the covariant volume element can be written as p ·dσ =
τmT cosh(y − η)r dr dφ dη.

For the phase-space distribution functions of quarks in the
fire-cylinder, they are taken to be the same as in the description
of the heavy ion collision dynamics; i.e., they are uniformly

distributed in the transverse plane, and their momentum distri-
butions are relativistic Boltzmannian in the transverse direction
but uniform in rapidity along the longitudinal direction. Also,
the Bjorken correlation of equal spatial η and momentum
y rapidities is imposed, which is consistent with the small
difference |y − η| � 0.5 seen in the transport model [22].
Explicitly, the quark momentum distribution per unit rapidity
at TC is

fq(η, r, y, pT )

= gqδ(η − y) exp

(−γ (mT − pT · β) − µq

TC

)
, (4)

where gq = 6 is the color-spin degeneracy of a quark,
β = (r/R)vC is the radial-dependent transverse flow velocity,
γ = (1 − β2)−1/2, and the quark chemical potential µq =
µb+µs . The abundances of quarks at the end of the QGP phase
in central Au+Au collisions at

√
sNN = 200 GeV described

by the expanding fire-cylinder model of the previous section
are Nu = Nd � 245, and Ns̄ � 149 at τC , if we take into
account the effect of gluons by converting them into quarks
according to the quark flavor composition in the quark-gluon
plasma as in Ref. [15]. For charm quarks, we assume that they
are in thermal equilibrium in the quark-gluon plasma, which is
supported by the large elliptic flow of electrons from charmed
meson decays that are observed in experiments [27,28] and
transport models [29,30]. Their number, however, is presently
uncertain, as it depends on whether charm quarks can be
produced from the quark-gluon plasma. If we assume that the
latter contribution is unimportant, then the number of charm
quarks Nc produced in heavy ion collisions is simply given by
the product of the charm quark number NNN

c produced from an
initial hard nucleon-nucleon scattering and the total number
of binary collisions (about 960) in central Au+Au collisions.
Using NNN

c from the PYTHIA program, we obtain Nc ∼ 1.5. The
value of Nc increases to about 3 and 7 if we use the NNN

C from
the PHENIX [31] and STAR experiments [32], respectively.
In the following study, we will use Nc = 3 for the calculation
and discuss the sensitivity of our results to the change in the
value for Nc. For the charm quark mass, it is taken to be mc =
1.5 GeV.

For the Wigner distribution function of the DsJ(2317)
meson, instead of using a function of Lorentz invariant
four-dimensional relative coordinates and momenta such as in
Refs. [15,33], we take it to be a function of three-dimensional
relative coordinates and momenta for simplicity. Specifically,
it is obtained by assuming that the wave functions of the quarks
are those of a harmonic oscillator with an oscillator frequency
ω. For a two-quark DsJ(2317) meson with Jπ = 0+, its cs̄

quarks are in the relative p wave, and its Wigner distribution
function is thus [33]

f
W,two
DsJ

(x; p)

=
(

16

3

y2

σ 2
− 8 + 16

3
σ 2k2

)
exp

(
− y2

σ 2
− σ 2k2

)
. (5)

In the above, we have used the usual definitions y = x1 − x2

and k = (msp1 − mcp2)/(mc + ms) for the relative coordinate
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and momentum of the two quarks, respectively. For the width
parameter σ , it can be related to the oscillator frequency ω

by σ = 1/(µω)1/2 with the reduced mass µ given by µ =
mcms/(mc + ms).

If the DsJ(2317) meson is a four-quark meson, we assume
that its four quarks are all in relative s waves, which then leads
to the Wigner distribution function

f
W,four
DsJ

(x; p) = 83 exp

(
−

3∑
i=1

y2
i

σ 2
i

−
3∑

i=1

k2
i σ

2
i

)
, (6)

where the relative coordinates yi and momenta ki are related
to the quark coordinates xi and momenta pi by the Jacobian
transformations

y1 = x1 − x2√
2

,

y2 =
√

2

3

(
mc

mc + ms

x1 + ms

mc + ms

x2 − x3

)
,

y3 =
√

3

4

(
mc

mc + ms + mq

x1 + ms

mc + ms + mq

x2

+ mq

mc + ms + mq

x3 − x4

)
,

(7)

and

k1 =
√

2
msp1 − mcp2

mc + ms

,

k2 =
√

3

2

mq(p1 + p2) − (mc + ms)p3

mc + ms + mq

,

k3 =
√

4

3

mq(p1 + p2 + p3) − (mc + ms + mq)p4

mc + ms + 2mq

.

(8)

It can be shown that the product of the Jacobians for the
coordinate and momentum transformations is equal to unity.

The width parameter σi for the ith relative coordinate
in a four-quark DsJ(2317) meson is again given by σi =
1/(µiω)1/2 with the reduced masses

µ1 = 2mcms

mc + ms

,

µ2 = 3

2

mq(mc + ms)

mc + ms + mq

,

µ3 = 4

3

mq(mc + ms + mq)

mc + ms + 2mq

.

(9)

We note that the reduced mass µ1 of the cs̄ quark pair in a
four-quark DsJ(2317) meson is a factor of 2 larger than that
in a two-quark DsJ(2317) meson because of differences in the
definitions of the relative coordinate and momentum.

B. Number of DsJ(2317) mesons produced from the
quark-gluon plasma

Evaluating the number of DsJ(2317) mesons produced from
the quark-gluon plasma requires information on the oscillator
frequency ω through the width parameter σ in the DsJ(2317)
meson Wigner distribution function, which is related to the
size of DsJ(2317). Since the latter is not known empirically,
we choose the value of the oscillator frequency to fit instead the
root-mean-square charge radius of the s-wave charmed D+

s (cs̄)
meson. Taking its Wigner distribution function similar to
Eq. (6) but with only one relative coordinate and momentum,
we obtain the following mean-square charge radius for the
D+

s (cs̄) meson:

〈
r2
Ds

〉
ch

= 2

3
〈(x1 − Y)2〉 + 1

3
〈(x2 − Y)2〉

= m2
c + 2m2

s

3(mc + ms)2 〈y2〉 = m2
c + 2m2

s

2(mc + ms)2 σ 2. (10)

In the above, Y = (mcx1 + msx2)/(mc + ms) is the center-of-
mass coordinate of cs̄ quarks, and we have used the relation
〈y2〉 = (3/2)σ 2 between the mean-square distance and the
width parameter for two quarks in the relative s wave as in
the D+

s (cs̄) meson. Using the value 〈r2
Ds

〉ch ≈ 0.124 fm2

determined from the light-front quark model [34], we find that
σ ≈ 0.60 fm and h̄ω ≈ 300 MeV.

For a two-quark DsJ(2317) meson, whose quarks are in the
relative p wave, the relation between the mean-square distance
of the two quarks and the width parameter is 〈y2〉 = (5/2)σ 2.
Using the above-determined width parameter σ , we obtain the
following root-mean-square radius for a two-quark DsJ(2317)
meson:

〈
r2
DsJ

〉1/2

two
= 1√

2

(
m2

c + m2
s

)1/2

mc + ms

〈y2〉1/2

=
√

5

2

(
m2

c + m2
s

)1/2

mc + ms

σ ≈ 0.53 fm. (11)

For a four-quark DsJ(2317) meson, its three size parameters
are σ1 = 1/(µ1ω)1/2 ≈ 0.42 fm, σ2 = 1/(µ2ω)1/2 ≈ 0.58 fm,
and σ3 = 1/(µ3ω)1/2 ≈ 0.6 fm. The resulting root-mean-
square radius of a four-quark DsJ(2317) meson is then

〈
r2
DsJ

〉1/2

four
=

[
3

4

(
m2

c + m2
s

)
σ 2

1

(mc + ms)2

+ 9

16

(
(mc + ms)2 + 2m2

q

)
σ 2

2

(mc + ms + mq)2

+ 1

2

(
(mc + ms + mq)2 + 3m2

q

)
σ 2

3

(mc + ms + 2mq)2

]1/2

≈ 0.62 fm, (12)

which is somewhat larger than that of a two-quark DsJ(2317)
meson.
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The coalescence integral in Eq. (3) can be evaluated
analytically if we expand the hyperbolic functions to first
order, neglect the transverse flow, and use nonrelativistic
momentum distributions for quarks. The first approximation is
valid for |y| � 0.5 considered in the present study. Although
the transverse flow strongly affects the transverse momentum
spectrum of produced DsJ(2317) mesons, it only has a
small effect on its number. As shown in Appendix A, these
approximations lead to the following numbers of produced
DsJ(2317) mesons from quark coalescence: ∼ 1.9×10−2 for a
two-quark DsJ(2317) meson and ∼ 1.1×10−3 for a four-quark
DsJ(2317) meson. These numbers are about a factor of 2 larger
than those obtained by numerically evaluating the coalescence
integral using the Monte Carlo method of Ref. [15], which
gives about 9.8 × 10−3 and 4.2 × 10−4 per unit rapidity for
the two-quark and four-quark DsJ(2317) mesons, respectively,
largely because of the use of the relativistic quark distribution
functions.

Since equilibrium thermal models have been successfully
employed in describing the experimental data for the yields
and ratios of many hadrons in heavy ion collisions at RHIC
[35,36], it is of interest to compare the predicted number
of DsJ(2317) mesons from the coalescence model with that
from the statistical model. In terms of the charm fugacity
γC and the strangeness chemical potential µS , this model
gives the following number of produced DsJ(2317) mesons
at hadronization:

N stat
DsJ

= γC

∫
σh

pµdσµ

(2π )3

d3p
E

fDsJ (x, p)

≈ VHγCeµS/TH

(2π )2

∫
dmT m2

T e
− γ̄ H mT

TH I0

(
γ̄ H β̄HpT

TC

)

≈ 5.2 × 10−2, (13)

where fDsJ (x, p) is the thermal distribution function of
DsJ(2317) mesons, given by an expression similar to Eq. (4)
for quarks, and I0 is the modified Bessel function. In obtaining
the numerical value in the last line of above equation, we
used VH ≈ 1908 fm3, TH = 175 MeV, β̄H = 0.3c, µS =
10 MeV, and the charm fugacity γC ≈ 8.4. The latter
ensures that the numbers of charmed hadrons produced
statistically at hadronization is the same as the number of
charm quarks Nc in the quark-gluon plasma. Specifically, we
have ND ≈ 1.1, ND∗ ≈ 1.5, NDs

≈ 0.31, and N�c
≈ 0.11,

giving a total of about 3 charmed hadrons. We note that
the number of DsJ(2317) mesons produced in the statistical
model is independent of its quark structure, contrary to that
in the coalescence model in which the yield for a two-quark
DsJ(2317) meson is about a factor of 20 larger than that for a
four-quark one.

IV. HADRONIC EFFECTS ON THE DsJ(2317) MESON

A. DsJ(2317) meson absorption cross sections by hadrons

The abundance of DsJ(2317) mesons can change during the
expansion of the hadronic matter as a result of absorption by

π

K

D

D+
sJ

(1)

_

π

D

sJ

K

D

D+
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π
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K*
_
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FIG. 2. Born diagrams for DsJ(2317) absorption by π, ρ, K̄ , and
K̄

∗
mesons.

pions, ρ mesons, anti-kaons, and vector anti-kaons. Neglecting
reactions with a Ds meson in the final states, which are
suppressed as a result of the presence of the isospin violated
vertex DsJDsπ , we have the following reactions:

πDsJ → KD∗(K∗D), ρDsJ → KD,

K̄DsJ → ρD(πD∗), K̄
∗
DsJ → πD,

(14)

as shown in Fig. 2 for the lowest-order Born diagrams. The
cross sections for these reactions can be evaluated using the
interaction Lagrangians

LρKK = igρKK(K̄�τ∂µK − ∂µK̄�τK) · �ρµ
,

LρDD = −igρDD(D̄�τ∂µD − ∂µD̄�τD) · �ρµ
,

LK∗Kπ = igK∗KπK̄
∗
µ�τ · (K∂µ �π − ∂µK �π) + H.c.,

LD∗Dπ = −igD∗DπD̄
∗
µ�τ · (D∂µ �π − ∂µD �π ) + H.c.,

LDsJDK = gDsJDKKDDsJ .

(15)

In the above, �τ are Pauli matrices for isospin, �π and �ρ denote
the pion and ρ meson isospin triplet, respectively, and K =
(K+,K0)T and K∗ = (K∗+,K∗0)T denote the pseudoscalar
and vector strange meson isospin doublet, respectively. The
isospin doublet pseudoscalar D and vector D∗ mesons are
defined in a similar way. For coupling constants, we use
gρDD = 2.52 from the vector dominance model (VDM)
[37,38], gK∗Kπ = 3.25 [39] and gD∗Dπ = 6.3 [40] from the
decay widths of K∗ and D∗, respectively, and gρKK = 3.25
from the SU(3)-flavor symmetry [41]. The coupling constant
gKDDsJ has been studied in the QCD sum rules, and its value
depends strongly on the quark structure of DsJ(2317) meson.
The predicted values are gDsJDK = 9.2 GeV if the DsJ(2317)
meson is a two-quark state [42] and gDsJDK = 3.15 GeV if it
is a four-quark state [43].
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The amplitudes for the reactions shown in Fig. 2 are given
by

M1 = −τ a
ij gDsJDK gK∗Kπ

1

t − m2
K

(2p2 − p4)µε
µ

4 ,

M2 = τ a
ij gDsJDK gD∗Dπ

1

t − m2
D

(2p2 − p4)µε
µ

4 ,

M3a = τ a
ij gDsJDK gρKK

1

t − m2
K

(2p4 − p2)µε
µ

2 ,

M3b = τ a
ij gDsJDK gρDD

1

u − m2
D

(p2 − 2p3)µε
µ

2 ,

M4 = M1(p2 ↔ −p4),

M5 = M2(p2 ↔ −p3; p3 ↔ p4),

M6 = M3(p2 ↔ −p4).

(16)

Here, the matrix element τ a
ij takes into account the isospin

states of the particles in a reaction, with a denoting those of
isospin triplet π and ρ mesons, and i and j those of isospin
doublet K,K∗,D, and D∗ mesons. The momenta p1 and p2

are those of initial (−) state particles, while p3 and p4 are
those of final (−) state particles on the left and right side
of a diagram. The usual Mandelstam variables are given by
s = (p1 + p2)2, t = (p1 − p3)2, and u = (p1 − p4)2.

To obtain the full amplitudes, one needs in principle to carry
out a coupled-channel calculation in order to avoid violation
of unitarity. Such an approach is, however, beyond the scope
of this study. To prevent the artificial growth of the tree-level
amplitudes with the energy, we introduce instead form factors
at interaction vertices, which are taken to have the form [44]

F (q) = �2

�2 + q2
, (17)

where q2, taken in the center of mass, is the squared three-
momentum transfer for t and u channels, or the squared
three-momentum of either the incoming or outgoing particles
for the s channel. For the cutoff parameter �, we use � =
1.3 GeV for vertices involving an off-shell K meson and
� = 3.7 GeV for those involving an off-shell D meson. These
values are determined from the QCD sum-rule calculations
given in Appendix B for the DsJDK three-point functions.
Although the calculations are only for a two-quark DsJ(2317)
meson, we use them also for a four-quark DsJ(2317) meson
as well as for other vertices in the diagrams in Fig. 2. We
expect this to be a reasonable assumption, because a study
of the X(3872) meson in the QCD sum rules has indicated
that both the form and the cutoff of its form factor are not
significantly different between a two-quark and a four-quark
X(3872) meson [45].

The isospin- and spin-averaged cross section is then given
by

σn = 1

64πsNI NS

pf

pi

∫
d�|Mn|2F 4, (18)

where |Mn|2 denotes the squared amplitude obtained from
summing over the isospins and spins of both initial and final
particles, with F denoting the appropriate form factors at

FIG. 3. (Color online) Cross sections for the absorption of a
four-quark DsJ(2317) meson by π, ρ, K̄ , and K̄

∗
mesons via reaction

πDsJ → KD∗(K∗D), ρDsJ → KD, K̄DsJ → ρD(πD∗), and
K̄

∗
DsJ → πD.

interaction vertices. The factors NI = (2I1 + 1)(2I2 + 1)
and NS = (2S1 + 1)(2S2 + 1) in the denominator are due to
averaging over the isospins I1 and I2 as well as the spins S1

and S2 of initial particles. The three-momenta in the center of
mass of initial and final particles are denoted by pi and pf ,
respectively.

In Fig. 3, we show the absorption cross sections of the
DsJ(2317) meson by π, ρ, K̄ , and K̄

∗
as functions of the total

center-of-mass energy s1/2 above the threshold energy s
1/2
0 of a

reaction for the scenario that it is a four-quark state. Aside from
those near the threshold of a reaction, where the cross section
can be very large or small depending on whether the reaction is
exothermic or endothermic, most cross sections are less than
1 mb except the reaction πDsJ → K∗D, which has a peak
value of about 2 mb. If the DsJ(2317) meson is a two-quark
state, its absorption cross sections are about a factor of 9
larger than corresponding ones shown in Fig. 3 as the coupling
constant gDsJDK is about a factor of 3 larger for a two-quark
DsJ(2317) meson than for a four-quark one.

The DsJ(2317) meson can also be produced in the hadronic
matter by the inverse reactions KD∗(DK∗) → πDsJ, KD →
ρDsJ, ρD(πD∗) → K̄DsJ , and πD → K̄

∗
DsJ , with cross

sections related to those of absorption reactions via the detailed
balance relations.

B. Thermally averaged DsJ(2317) meson absorption
cross sections

In the kinetic model to be used in the next section
for studying DsJ(2317) meson absorption and production in
hadronic matter, the thermally averaged cross sections are
needed. In terms of the thermal distribution functions fi(p) of
DsJ(2317) mesons and other hadrons, the thermally averaged
cross section σab→cd for the reaction ab → cd is given by [46]

〈σab→cdv〉 =
∫

d3pad
3pbfa(pa)fb(pb)σab→cdvab∫

d3pad3pbfa(pa)fb(pb)

= [
4α2

aK2(αa)α2
bK2(αb)

]−1

×
∫ ∞

z0

dz[z2 − (αa +αb)2][z2 − (αa −αb)2]

×K1(z)σ (s = z2T 2), (19)
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FIG. 4. (Color online) Thermally averaged cross sections for the
absorption of a four-quark DsJ(2317) meson by π, ρ, K̄ , and K̄

∗

mesons via reaction πDsJ → KD∗(K∗D), ρDsJ → KD, K̄DsJ →
ρD(πD∗), and K̄

∗
DsJ → πD.

with αi = mi/T , z0 = max(αa + αb, αc + αd ),K1 being the
modified Bessel function, and vab denoting the relative velocity
of the initial two interacting particles a and b, i.e.,

vab =
√

(pa · pb)2 − m2
am

2
b

EaEb

. (20)

The thermally averaged absorption cross sections of the
DsJ(2317) meson by π, ρ, K̄ , and K̄

∗
as functions of the

temperature of the hadronic matter are shown in Fig. 4 for
the case that DsJ(2317) is a four-quark meson. It is seen that
the thermally averaged cross section of the dominant reaction
πDsJ → K∗D has values less than 0.6 mb. Its value is again
about a factor of 9 larger if the DsJ(2317) is a two-quark meson.

V. TIME EVOLUTION OF THE DsJ(2317) MESON
ABUNDANCE IN HADRONIC MATTER

A. Rate equation for DsJ(2317) meson production
in heavy ion collisions

In terms of thermally averaged cross sections and the
densities of π, ρ,K , and K∗ mesons, the time evolution of
the DsJ(2317) meson abundance in the hadronic matter is
determined by the kinetic equation

dNDsJ (τ )

dτ
= RQGP(τ ) +

∑
a,b,c

〈σaDsJ→bcvaDsJ 〉n(0)
a (τ )

×
[
N

(0)
DsJ

(τ )
nc(τ )

n
(0)
c (τ )

− NDsJ (τ )

]
, (21)

where n(0)
a (τ ), n(0)

c (τ ) and N
(0)
DsJ

(τ ) are, respectively, the equilib-
rium densities of light meson type a, charmed meson type c,
and DsJ(2317) meson in the hadronic matter at proper time
τ when its temperature is T according to Eq. (2). These
equilibrium densities are calculated using formulas similar to
Eq. (13) without the fugacity parameter. Since hadronization
of the quark-gluon plasma takes a finite time of τH − τC �
2.5 fm/c,DsJ(2317) mesons are produced from the quark-
gluon plasma in the mixed phase, with a rate proportional
to the volume of the quark-gluon plasma. This is included in

FIG. 5. (Color online) Time evolution of the DsJ(2317) meson
abundance in central Au+Au collisions at

√
sNN = 200 GeV for

different initial numbers of DsJ(2317) mesons produced from the
quark-gluon plasma.

Eq. (21) through the term RQGP(τ ). Since the fraction of the
quark-gluon plasma during the mixed phase decreases almost
linearly with the proper time, we can approximately write

RQGP(τ ) =
{

N
(0)
DsJ

/(τH − τC), τC < τ < τH ;

0, otherwise.
(22)

In the above, N
(0)
DsJ

is the total number of DsJ(2317) mesons
produced from the quark-gluon plasma. In the following
calculations, it is obtained either from the coalescence model
by evaluating Eq. (3) numerically using the Monte Carlo
method or from the statistical model using Eq. (13). In writing
Eq. (21), we have assumed that the total number of charmed
hadrons is conserved during the evolution of the hadronic
matter as charms are not likely to be produced and destroyed
in the hadronic matter because of their small production and
annihilation cross sections [47–49].

B. DsJ meson yield in relativistic heavy ion collisions

In Fig. 5, the abundance of DsJ(2317) mesons in central
Au+Au collisions at

√
sNN = 200 GeV is shown as a function

of the proper time of the fire-cylinder. Since the initial number
of DsJ(2317) mesons produced from the quark-gluon plasma
via quark coalescence is below the equilibrium number for
both the two-quark and four-quark DsJ(2317) mesons, its
number increases during the hadronic evolution as shown by
the solid and dashed lines, respectively. The final number of
DsJ(2317) mesons is about 3.0×10−2 if the DsJ(2317) meson
is a two-quark state and is about 6.0×10−3 if it is a four-quark
meson. Although the ratio (∼5) between the final numbers
for the two- and four-quark DsJ(2317) mesons is smaller
than that (∼20) for initially produced DsJ(2317) mesons, it
is still appreciable. This result differs significantly from the
predictions of the statistical model. In this case, the DsJ(2317)
meson number decreases slightly to 3.8 × 10−2 during the
hadronic evolution if it is a two-quark meson as shown by the
dash-dotted line, and it remains essentially unchanged during
hadronic evolution if it is a four-quark meson as shown by the
dotted line. Since the final yield of DsJ(2317) mesons in the
coalescence model is much smaller for a four-quark state than
for a two-quark state and also that from the statistical model,
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studying DsJ(2317) meson production in relativistic heavy ion
collisions thus provides the possibility of understanding not
only its production mechanism but also its quark structure.

Above results are obtained by assuming that there are three
charm quarks in the quark-gluon plasma, based on the number
of charm quarks measured by the PHENIX Collaboration in
p + p collisions. If this number is increased by a factor of 2,
which is closer to that expected from the STAR experiment on
d+Au collisions, the final DsJ(2317) meson numbers in both
the coalescence and statistical models are increased by about
a similar factor. A similar reduction factor is seen in the final
DsJ(2317) meson numbers in heavy ion collisions if the total
charm quark number is reduced by a factor of 2 as given by
the PYTHIA program for p + p collisions.

VI. SUMMARY

Using the quark coalescence model, we have predicted the
yield of DsJ(2317) mesons in central Au+Au collisions at
RHIC. Contrary to the prediction of the statistical model,
the initial number of DsJ(2317) meson produced at the end
of the quark-gluon stage of heavy ion collisions depends
sensitively on whether it is a two-quark or a four-quark
meson, with the former giving an order of magnitude larger
number than the latter. To take into account the effects
of absorption and production during subsequent hadronic
evolution, we have used a hadronic model to evaluate the
cross sections for the absorption of the DsJ(2317) meson by
pion, ρ meson, anti-kaon, and vector anti-kaon in the tree-level
Born approximation. With empirical masses and coupling
constants as well as form factors from the QCD sum rules,
we have found that all these cross sections are small, except
the reaction πDsJ → K∗D, which has a peak cross section
of about 2 mb, if the DsJ(2317) is a four-quark meson, but
they are about ten times larger if it is a conventional two-quark
meson. Including these reactions in a kinetic model based on a
schematic hydrodynamic description of relativistic heavy ion
collisions, we have studied the time evolution of the abundance
of DsJ(2317) mesons in these collisions. Our results show
that the large difference in the initial numbers given by the
quark coalescence model for the two-quark and four-quark
DsJ(2317) mesons remains appreciable at freeze-out. On
the other hand, the DsJ(2317) number determined from the
statistical model is essentially unchanged if the DsJ(2317)
meson is a four-quark meson and only changes slightly if it is
a two-quark meson. Studying DsJ(2317) production at RHIC
and also at the forthcoming LHC thus offers the possibility to
understand its quark structure and production mechanism.

In the present study, we have assumed that quarks in the
four-quark DsJ(2317) meson are all in a relative s wave.
The possibility that it is formed from a pair of diquark
and antidiquark states is not considered. How such a quark
structure for the DsJ(2317) meson would affect its production
probability is worth studying. Also, to determine the yield
of DsJ(2317) mesons in relativistic heavy ion collisions, one
requires accurate information on the number of charm quarks
produced during initial hard nucleon-nucleon collisions, as
increasing or decreasing the initial quark number by a factor

affects the final DsJ(2317) meson number by a similar factor.
Furthermore, it is important to know if charm quarks can be
produced from the quark-gluon plasma, as this would affect
the initial DsJ(2317) mesons produced from the quark-gluon
plasma as well.
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APPENDIX A: APPROXIMATE EVALUATION OF THE
COALESCENCE INTEGRAL

For a hypersurface of constant proper time and a distribution
with Bjorken correlation between y and η, we can expand the
hyperbolic function in the coalescence integral to first order
in y and η if we consider Ds,J (2317) meson production at
midrapidity with |y| < 0.5. In this case, the invariant phase-
space factor in Eq. (3) can be approximated by

pi · dσi

d3pi

Ei

� d3xid
3pi . (A1)

Neglecting the transverse flow and treating quarks nonrela-
tivistically, we can then use the relation

n∑
i=1

p2
i

2 miT
= K2

2M T
+

n−1∑
i=1

k2
i

2µiT
, (A2)

where M = ∑n
i=1mi , to express the quark Boltzmann

momentum distribution functions in terms of the total K
and relative ki momenta. Using also the total and relative yi

coordinates of the quarks, we obtain the following expression
for the number of Ds,J (2317) mesons produced from quark
coalescence:

NDsJ = gDsJ

n∏
j=1

Nj

n−1∏
i=1

∫
d3yi d3ki f

W
DsJ

(yi , ki) fq(ki)∫
d3yid3kifq(ki)

.

(A3)

In the above, we made use of the fact that the Wigner
function of DsJ(2317) meson is factorable in both the relative
coordinates and the relative momenta of its constituent quarks.
Because of −0.5 � y = η � 0.5, the momentum space
integral in Eq. (A3) reduces to a two-dimensional one, as the
momentum integral in the z-direction gives simply one.

If the DsJ(2317) meson is a p-wave two-quark meson,
evaluating the integrals in Eq. (A3) with its Wigner function
given by Eq. (5) leads to the following number of DsJ(2317)
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mesons produced from quark coalescence:

N two
DsJ

� 1

36
NcNs̄

2

3

(4πσ 2)3/22µTCσ 2

VC(1 + 2µTCσ 2)2

≈ 1.9 × 10−2. (A4)

For a four-quark DsJ(2317) meson with its Wigner function
given by Eq. (6), the number of DsJ(2317) mesons produced
from quark coalescence is

N four
DsJ

� 1

1296
NcNs̄(NuNū +NdNd̄ )

3∏
i=1

(
4πσ 2

i

)3/2

VC

(
1+2µiTCσ 2

i

)
� 1.1 × 10−3. (A5)

It is interesting to note that the ratio of the yields of the
two-quark to the four-quark DsJ(2317) meson is about 17
and is largely due to the different color-spin-isospin statistical
factors associated with the two different quark structures of
the DsJ(2317) meson.

APPENDIX B: THE DsJDK FORM FACTOR

In this Appendix, we compute the DsJDK form factor using
the QCD rum rules [50,51]. In this approach, the short-range
perturbative QCD is extended by the Wilson’s operator product
expansion (OPE) of the correlators, which results in a series
in powers of the squared momentum with Wilson coefficients.
The convergence at low momentum is improved by using a
Borel transform. The expansion involves universal quark and
gluon condensates. Equating the quark-based calculation of a
given correlator to the same correlator that is calculated using
hadronic degrees of freedom via a dispersion relation then
provides the sum rules from which a hadronic quantity can be
estimated.

We shall use the three-point function to evaluate the DsJDK
form factor by following the procedure suggested in Ref. [52]
and further extended in Ref. [53]. This means that we shall
calculate the correlators for an off-shell D meson and then
for an off-shell K meson, requiring that the corresponding
extrapolations to the respective poles lead to the same unique
coupling constant.

The three-point function associated with a DsJDK vertex
with an off-shell D meson is given by

�(D)
µ (p, p′) =

∫
d4xd4y〈0|T {j5µ(x)jD(y)j †

DsJ
(0)}|0〉

× eip′ ·xei(p−p′)·y, (B1)

where j5µ = s̄γµγ5q, jD = iq̄γ5c, and jDsJ = c̄s are the
interpolating fields for the K,D, and DsJ , respectively with
q, s, and c being the light, strange, and charm quark fields. Here
we take DsJ to be a standard scalar quark-antiquark meson.

The phenomenological side of the vertex function,
�µ(p, p′), is obtained by the consideration of the K and D

states’ contribution to the matrix element in Eq. (B1):

�(D)phen
µ (p, p′) = mDsJ m

2
DFKfDfDsJ

mc

(
p2 − m2

DsJ

) (
p′2 − m2

K

)
× g

(D)
DsJDK(q2)(
q2 − m2

D

)p′
µ + higher resonances.

(B2)

In deriving Eq. (B2), we used

〈DsJ(p)|K(p′)D(q)〉 = g
(D)
DsJDK(q2), (B3)

where q = p′ − p, and the decay constants FK and fD and
fDsJ are defined by the matrix elements

〈0|j5µ|K(p′)〉 = ip′
µFK, (B4)

〈0|jD|D(q)〉 = m2
DfD

mc

, (B5)

and

〈0|jDsJ |DsJ(p)〉 = mDsJ fDsJ . (B6)

The contribution of higher resonances and continuum in
Eq. (B2) will be taken into account as usual in the standard
form of Ref. [54], through the continuum thresholds s0 and u0

for the DsJ and K mesons, respectively.
The QCD side, or the theoretical side, of the vertex

function is evaluated by performing Wilson’s operator product
expansion of the operator in Eq. (B1). Expressing �µ in terms
of the invariant amplitudes,

�µ(p, p′) = F1(p2, p′2, q2)pµ + F2(p2, p′2, q2)p′
µ, (B7)

we can write a double dispersion relation for each one of the
invariant amplitudes Fi over the virtualities p2 and p′2 holding
Q2 = −q2 fixed:

F
(D)
i (p2, p′2,Q2)

= − 1

4π2

∫ ∞

m2
c

ds

∫ ∞

0
du

ρi(s, u,Q2)

(s − p2)(u − p′2)
, (B8)

where ρi(s, u,Q2) equals the double discontinuity of the
amplitude Fi(p2, p′2,Q2) on the cuts m2

c � s � ∞ and
0 � u � ∞, which can be evaluated using Cutkosky’s rules.
Finally, to suppress the condensates of higher dimension and
at the same time reduce the influence of higher resonances,
we perform a double Borel transform in both variables P 2 =
−p2 → M2 and P ′2 = −p′2 → M ′2. Equating the two
representations described above, we obtain the following sum
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rule in the structure p′
µ:

mDsJ m
2
D

mc

FKfDfDsJ g
(D)
DsJDK(Q2)e−m2

DsJ
/M2

e−m2
K/M ′2

= (
Q2 + m2

D

) [
mc〈s̄s〉e−m2

c/M
2

− 1

4π2

∫ s0

m2
c

ds

∫ umax

0
du exp( − s/M2)

× exp( − u/M ′2)f (s, t, u)θ (u0 − u)

]
, (B9)

where t = −Q2 and

f (s, t, u) = 3

2[λ(s, u, t)]1/2

(
m2

c + 2mcms − s

+ (
2m2

c + 2mcms − s − t + u
) (

m2
c(s − t

+u
) + s(t + u − s)

)
[λ(s, u, t)]−1

)
, (B10)

with λ(s, u, t) = s2 + u2 + t2 − 2su − 2st − 2tu, and umax =
s + t − m2

c − st/m2
c .

We use the same parameters as in Ref. [42]: ms =
0.15 GeV,mc = 1.26 GeV, FK = 0.16 GeV,mD =
1.865 GeV,mK = 0.498 GeV,mDsJ = 2.317 GeV,

fD = 0.23 GeV, fDsJ = 0.225 GeV, and 〈ss〉 = 0.8〈qq〉,
with 〈qq〉 = −(0.245)3 GeV3. For the continuum
thresholds, we take s0 = (6.3 ± 0.1) GeV2 and u0 =
(mK + �u)2 with �u = 0.5 GeV.

We also use the same Borel window as in Ref. [42], i.e.,
10 GeV2 � M2 � 20 GeV2, and work at a fixed ratio
M ′2/M2 = 0.64/m2

DsJ
. We find a good Borel stability in this

region of the Borel mass. Fixing M2 = 15 GeV2, we show
by the filled circles in Fig. 6 the momentum dependence of
g

(D)
DsJDK(Q2).

Since the present approach cannot be used at small values
of Q2, extracting the gDsJDK coupling from the form factor
requires extrapolation of the curve to the mass of the off-shell
meson D. To do this, we fit the QCD sum-rule results with
an analytical expression. We obtain a reasonable fit using a

FIG. 6. (Color online) Momentum dependence of the DsJDK

form factors. The solid and dashed lines give the parametrization of
the QCDSR results for g

(D)
DsJ DK(Q2) (circles) and g

(K)
DsJ DK(Q2) (squares),

respectively.

monopole form, that is,

g
(D)
DsJDK(Q2) = 92.4

Q2 + 14.1
, (B11)

where the numbers are in units of GeV2. This fit is also shown
by the solid line in Fig. 6. From Eq. (B11) we get gDsJDK =
g

(D)
DsJDK(Q2 = −m2

D) = 8.7.
To check the consistency of this fit, we also evaluate the

form factor at the same vertex, but for an off-shell kaon. In this
case, we have to evaluate the three-point function

�(K)
µ (p, p′) =

∫
d4xd4y〈0|T {jD(x)j5µ(y)j †

DsJ
(0)}|0〉

× eip′ ·xei(p−p′)·y. (B12)

Proceeding in a similar way, we obtain the following sum rule:

mDsJ m
2
D

mc

FKfDfDsJ g
(K)
DsJDK(Q2)e−m2

DsJ
/M2

e−m2
D/M ′2

= −Q2 + m2
K

4π2

∫ s0

m2
c

ds

∫ u0

umin

due−s/M2
e−u/M ′2

× g(s, t, u), (B13)

where umin = m2
c − m2

c t

s−m2
c

and

g(s, t, u) = 3

[λ(s, u, t)]3/2 [m4
c(s − t + 3u)

+u(mcms(s + t − u) + s( − s + t + u))

+m2
c(−2u(s − t + u) + mcms(s − t + 3u))].

(B14)

Using now u0 = (mD + �u)2 with �u = 0.5 GeV and

M ′2 = m2
D

m2
DsJ

M2, we find that the results are also rather stable

as a function of the Borel mass. Fixing M2 = 15 GeV2, we
show by the squares in Fig. 6 the QCD sum-rule results for
g

(K)
DsJDK(Q2). A good fit of these results can be obtained using

an exponential form,

g
(K)
DsJDK(Q2) = 7.98e−Q2/1.75, (B15)

where 1.75 is in units of GeV2, as shown in Fig. 6 by the dashed
line. From Eq. (B15) we get gDsJDK = g

(K)
DsJDK(Q2 = −m2

K ) =
9.1, in excellent agreement with both the result obtained from
g

(D)
DsJDK(Q2 = −m2

D) above and the result obtained in Ref. [42]
for this coupling constant: gDsJDK = 9.2 ± 0.5.

Considering the uncertainties in the continuum thresholds,
and the difference in the values of the coupling extracted when
the D meson or the kaon is off-shell, our result for the DsJDK

coupling constant is thus gDsJDK = 8.9 ± 0.9.
From the parametrizations in Eqs. (B11) and (B15), we can

also obtain information about the cutoff (�) in the form factors.
We see that the cutoff is much bigger when the D meson
is off-shell (� ≈ 3.7 GeV) than when the kaon is off-shell
(� ≈ 1.3 GeV), in agreement with the results obtained in
Refs. [52,53].
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